Top Quark Pair Properties with ATLAS

Venkat Kaushik

University of Arizona On behalf of the ATLAS collaboration Phenomenology 2012 Symposium

May 7-9 2012

Motivation:

• Heaviest of the known fundamental particles

 $m_t = 173.2 \pm 0.9$ GeV close to the EW scale

• Decay occurs before hadronization process "bare quark"

width $\Gamma = 1.42$ GeV and lifetime $\tau = 4.5 \times 10^{-25} s \ll \Lambda_{QCD}^{-1}$

• Window into physics beyond the Standard Model

 $X \rightarrow t\overline{t}$: Topcolor or little Higgs Z', g_{KK} from RS extra dim. etc.

- LHC is a top factory copious production, $\sigma(pp \rightarrow t\bar{t}) \sim 177 {
 m pb}$
- Tevatron measured an excess on $t\bar{t}$ asymmetry (A_{FB}) test it at LHC

Outline:

- Top pair production and decay
- Searches for $t\bar{t}$ resonances in lepton plus jets and di-lepton channels
- Observation of spin correlation in $t\overline{t}$ events
- Measurement of charge asymmetry in $t\overline{t}$ production
- Summary

ATLAS Detector

Top pair production and decay

Top Pair Branching Fractions

Production

- gluon fusion: $gg \rightarrow t\bar{t}$ (90%) dominates at LHC
- $q\overline{q}$ annihilation: $q\overline{q} \rightarrow t\overline{t}$ (10%)
- Decay
 - Branching ratio $Br(t \rightarrow Wb) \sim 1$
 - t may decay leptonically $(t \rightarrow \ell \nu b)$ or hadronically $(t \rightarrow qq'b)$
 - alljets: Br=46%, large multi-jet background
 - lepton+jets: Br=45%, intermediate background
 - dileptons: Br=9%, small multijet background

• $E_T > 25$ GeV and isolated

Object Reconstruction and Selection

- $|\eta_{clus}| < 2.47$
- require track association
- muon

electron

- $p_T > 20$ GeV and isolated
- $|\eta| < 2.5$
- require re-fitted (MS + ID) track

• jets

- Anti- $k_T R = 0.4$ calibrated jets
- $p_T > 25 \text{ GeV}$
- $|\eta| < 2.5$
- *n_{jets}* ≥ 4
- \geq 1 *b*-tagged jet

- Single-lepton Final State
 - lepton: $\ell \in e, \mu$
 - single e (μ) trigger p_T >20 (18) GeV
- Di-lepton Final State
 - 2 leptons: $\ell, \ell \in ee, e\mu, \mu\mu$
 - single e(μ) trigger p_T >20 (18) GeV
 - $\bullet~\geq 2$ jets and = 2 OS leptons
 - $|m_Z m_{\ell\ell}| > 10 \text{ GeV}$

 - $H_T > 130$ GeV in (in $e\mu$)

Search for $t\bar{t}$ resonances in lepton plus jets channel

 Production of top pairs via unknown mediator X at the LHC (e.g. Z', g_{KK})

n_{jets} ≥ 3 if any jet with m_j > 60 GeV

Х

- $n_{jets} \ge 4$ otherwise
- leading jet with $p_T > 60 \text{ GeV}$
- ullet \geq 1 *b*-tagged jet

ATLAS-CONF-2012-029 ($\mathcal{L} = 2.05 fb^{-1}$)

- Benchmark models for $X \rightarrow t\overline{t}$:
 - Leptophobic Topcolor Z' $\Gamma/M = 1.2\%$
 - Kaluza-Klein gluon (g_{KK}) $\Gamma/M = 15.3\%$ (RS models)
- Primary backgrounds:
 - $t\overline{t}$, single top (MC@NLO)
 - W+jets (ALPGEN) normalized to Data
 - QCD multi-jet (fake lepton) estimated using data-driven template

Search for $t\bar{t}$ resonances in lepton plus jets channel

 $t\bar{t}$ mass reconstruction

- νp_z is determined using W mass constraint
- If no jet has m_j > 60 GeV: 3 or 4 jets considered are close to lepton or (other jet)
- If jet has $m_j > 60$ GeV:
 - hadronic t formed by
 high-mass jet + closest jet
 - leptonic t formed by ℓ + closest jet

Search for $t\bar{t}$ resonances in lepton plus jets channel

Top Pair Properties

- Dominant systematic uncertainties
 - Normalization:
 - QCD: 50%
 - W/Z+jets 48%
 - $t\bar{t} + 7/-9.6\%$
 - Shape: Jet energy scale/resolution, *b*-tagging $m_{t\bar{t}}$ shape, ISR/FSR
- Exclusion Limits
 - Derived from binned $m_{t\bar{t}}$ variable using Bayesian method
 - $500 < m_{Z'} < 860$ [GeV]
 - $\circ 500 < m_{g_{KK}} < 1025 \, [GeV]$

σ × BR(Z'→ tť) [pb]

Search for $t\overline{t}$ resonances in di-lepton channel

ATLAS-CONF-2011-123 ($\mathcal{L} = 1.04 fb^{-1}$)

- 3 channels: $(\ell, \ell) \in ee, \mu\mu, e\mu$
- Normalization to data in control region with Z in its mass window
- Primary backgrounds:
 - $t\overline{t}$, single top (MC@NLO), $Z/\gamma^* \rightarrow \ell\ell$ (ALPGEN), Small background (W+jets)
- Systematic uncertainties:
 - jet calibration, ISR/FSR, generator, lepton efficiency
- Limits:
 - Observed lower limits: $m_{g_{KK}}$ from 0.8 to 1.02 TeV

Observation of spin correlation in $t\bar{t}$ events

Observation of spin correlation would

- confirm spin 1/2 of top quark
- set the upper limit on lifetime and lower bound on width
- probe presence of non-standard interactions like Higgs decay
- Observable: $\Delta \phi = |\phi_{\ell^+} \phi_{\ell^-}|$ dilepton mode
- Primary backgrounds:
 - $t\overline{t}$, single top (MC@NLO), $Z/\gamma^* \rightarrow \ell\ell$ (ALPGEN), Small background (W+jets)
- Spin correlation coefficient:

$$A_{helicity}^{SM} = 0.32, \quad A_{maximal}^{SM} = 0.44$$
$$A = \frac{N(\uparrow\uparrow) + N(\downarrow\downarrow) - N(\uparrow\downarrow) - N(\downarrow\uparrow)}{N(\uparrow\uparrow) + N(\downarrow\downarrow) + N(\uparrow\downarrow) + N(\downarrow\uparrow)}$$

<u>arXiv:1203.4081</u> ($\mathcal{L} = 2.1 fb^{-1}$)

- Define SM fraction f^{SM} and uncorrelated fraction f^{UC} with $f^{SM} + f^{UC} = 1$
- SM vs uncorrelated at parton level

Systematic uncertainties:

- jet calibration (up to 9%),
 ISR/FSR (4.5%), PDF (8%)
- generator(8%), data/MC template statistics (14%/9%)
- Fit Results:
 - Binned likelihood fit to $\Delta \phi$ using MC

$$\begin{array}{rcl} f^{SM} &=& 1.30 \pm 0.14^{+0.27}_{-0.22} \\ A_{helicity} &=& 0.42 \pm 0.04^{+0.09}_{-0.07} \\ A_{maximal} &=& 0.57 \pm 0.06^{+0.12}_{-0.10} \end{array}$$

Observation of spin correlation in $t\overline{t}$ events

Measurement of charge asymmetry in $t\bar{t}$ events

<u>arXiv:1203.4211</u> ($\mathcal{L} = 1.04 fb^{-1}$)

- Observable: $\Delta |y| = |y_t| |y_{\overline{t}}|$; semi-leptonic channel
- $gg \rightarrow t\bar{t}$ production is symmetric where as $q\bar{q} \rightarrow t\bar{t}$ is asymmetric at NLO and $A_C^{SM} < 0$, \bar{t} are produced more centrally than t

 $A_C = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)}$

- tt̄ system is reconstructed using a top likelihood which selects correct object combination on MC with 74% efficiency
- Resulting $\Delta |y|$ distribution is unfolded using iterative Bayesian approach

Measurement of charge asymmetry in $t\bar{t}$ production

 A_C Fit Results: dt = 1.04 fb MC@NLC $-0.018 \pm 0.028 \,(\text{stat}) \pm 0.023 \,(\text{syst})$ 0.05 $-0.053 \pm 0.070 \,(\mathrm{stat}) \pm 0.054 \,(\mathrm{syst}) \,(\mathrm{m_{t\bar{t}}} < 450 \,\mathrm{GeV})$ Ω $-0.008 \pm 0.035 \,(\mathrm{stat}) \pm 0.032 \,(\mathrm{syst}) \,(\mathrm{m_{t\bar{t}}} > 450 \,\mathrm{GeV})$ -0.05 -0.1 -0.15In good agreement with SM < 450 predictions 0.15 Results disfavor models with ATLAS flavor-changing Z' and W'0.1 proposed to explain Tevatron's ں ح A_{FB} measurements

- Top pairs offer a rich phenomenology. Many analyses carried out in ATLAS with top quarks
- A few measurements, search results using top pairs shown today
 - No evidence of $X \to t\overline{t}$.
 - First observation of spin correlation and charge asymmetry measurement in good agreement with SM predictions
 - Disfavors some models proposed to explain Tevatron's A_{FB} measurements
- More results with $5 \, {\rm fb}^{-1}$ to come
- Increased energy ($\sqrt{s} = 8 \text{ TeV}$) and statistics beneficial for searches and measurements
- Details of results
 - ATLAS Top results
 - ATLAS Exotics results

- A Search for $t\bar{t}$ Resonances in the Lepton Plus Jets Channel using 2.05 fb^{-1} pp Collisions at $\sqrt{s} = 7$ TeV <u>CDS 1430738</u>
- A Search for $t\overline{t}$ Resonances in the Dilepton Channel in 1.04 fb^{-1} of pp Collisions at $fb^{-1} = 7$ TeV <u>CDS 1376423</u>
- Observation of spin correlation in $t\overline{t}$ events from pp collisions at \sqrt{s} = 7 TeV using the ATLAS detector <u>arXiv:1203.4081</u>
- Measurement of the charge asymmetry in top quark pair production in pp collisions at $\sqrt{s} = 7$ TeV using the ATLAS detector <u>arXiv:1203.4211</u>

- Steady and significant increase in instantaneous luminosity in 2011
- Integrated luminosity recorded by ATLAS in 2011 reached 5.3 fb^{-1} with 5.6 fb^{-1} delivered by LHC with stable beams
- Analyses and results shown today include dataset with 1 to 2 fb⁻¹ integrated luminosities

• Electrons:

• Clusters of energy deposits in EM calorimeter are reconstructed and associated to charged particle tracks in the inner detector.

• Muons:

- Track segments are reconstructed in the muon chambers (spectrometer) and segments are combined starting from the outermost layer. They are fitted to account for material effects.
- Inner detector charged particle tracks are matched to the fitted spectrometer tracks.

Jets:

• Clusters of energy deposits in EM and hadronic calorimeter cells are combined using the Anti- k_T algorithm with distance parameter R = 0.4

 Formed using a vector sum of all jets, electron and muon candidates and all the unassigned cells in the calorimeter.

A

BACKUP - Measurement of charge asymmetry in $t\overline{t}$ production

- Preliminary result, Oct 2011
 [ATL-COM-PHYS-2011-1386]
- $\mathcal{L} = 1.04 fb^{-1}$
- $t\overline{t}$: semi-leptonic mode $\ell \in e, \mu$
- Observable: $\Delta |y| = |y_t| |y_{\overline{t}}|$
- Event selection:

 - require $n_{jets} \ge 4$ with $p_T > 25$ GeV
 - Require at least one *b*-tagged jet

