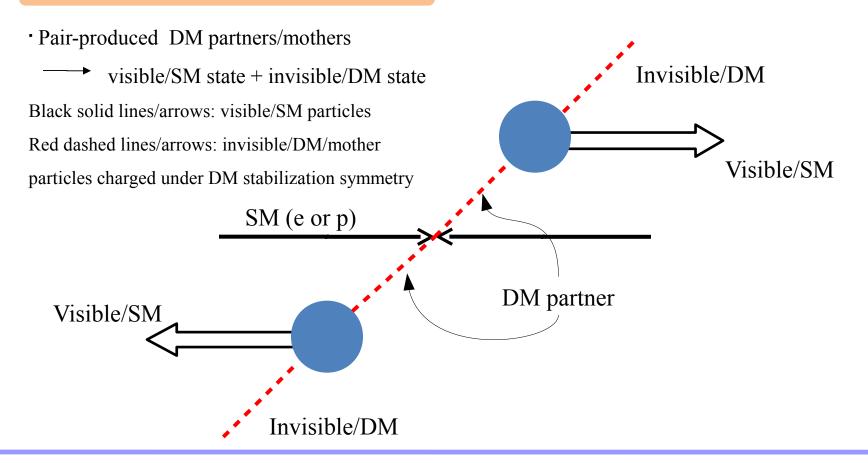
Using M_{T2} to Distinguish DM Stabilization Symmetries

Maryland Center for Fundamental Physics (MCFP) University of Maryland, College Park Doojin Kim

5/8/2012

K. Agashe, DK, D. G. Walker, and L. Zhu, Phys. Rev. D 84 055020 (2011) arXiv:hep-ph/1012.4460

1. Introduction

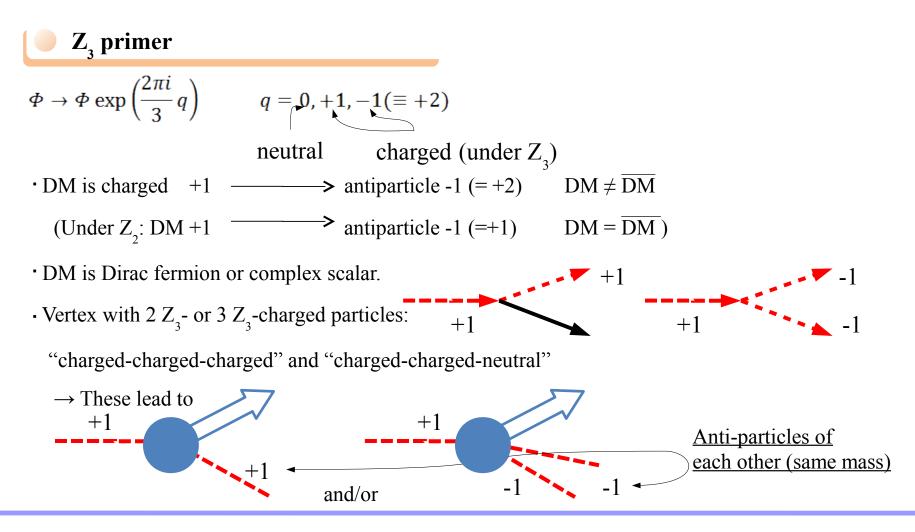

Motivation

- Evidence for the existence of DM
 - WIMPs (Weakly Interacting Massive Particles): well-motivated DM candidate
 - \rightarrow Annihilation cross section of a pair of DM \rightarrow $M \sim 100$ GeV (Weak scale)
- · Many beyond-SM models (e.g., SUSY, UED, and Little Higgs) contain such a DM candidate.
 - → direct/indirect measurement, collider experiment
 - \rightarrow (For most of them,) Z₂/parity as the DM stabilization symmetry
- $\cdot Z_2$ is **NOT** the only choice to stabilize DM!
 - \rightarrow Any discrete or continuous global symmetry can be employed to stabilize DM.
 - \rightarrow Should identify the nature of the symmetry, *experimentally*.
 - \rightarrow Any **DISTINGUISHABLE** features, in particular, between Z_2 and Z_3 in collider signals?
 - (Z₃ as a simple non-Z₂: e.g., warped GUT: K. Agashe and G. Servant, Phys. Rev. Lett. 93, 231805(2004) arXiv:0403143, E. Ma, Phys. Lett. B 662, 49 (2008) arXiv:0708.3371, B. Batell, arXiv: 1007.0045)

$\rightarrow \underline{M}_{\underline{12}}$ distribution as a tool

1. Introduction

Collider signals



2. Assumptions

Assumptions

- Model-independent argument (for any Z_3 models)
 - \rightarrow Possible to generalize to more complicated symmetries
- Pair-produced same mother particles
- Looking at the decay on BOTH decay sides assuming off-shell intermediate states.
 cf) one decay side using invariant mass variable → see Agashe, DK, Toharia, and Walker
 Phys. Rev. D 82 015007 (2010) arXiv: hep-ph/1003.0899
- Mother particles decay into DM **INSIDE** the detector.
 - \rightarrow no meta-stable mother particles (See Walker arXiv:hep-ph/0907.3142)
- Massless visible/SM particles (just for simplicity)

3. Z₃ symmetry

4.1 Review on M_{T2} variable

- More information available from both decay sides
 - cf) invariant mass variable of visible particles from the same decay side
- Single visible particle in each decay side: invariant mass variable does NOT work
- However, complicated: *invisible* particles in the final state (missing energy/momentum)
 - \rightarrow Missing energy/momentum shared by the two decay chains
 - $\rightarrow M_{_{T2}}$ constructed to comprehend this situation

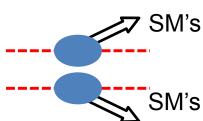
Main strategy

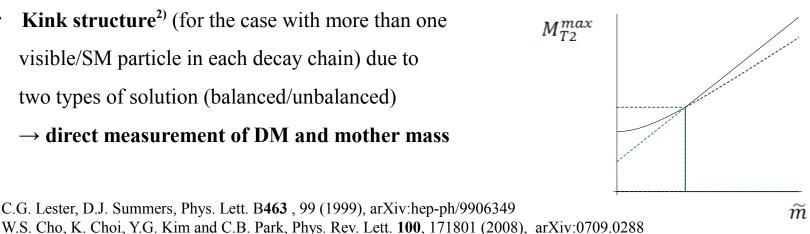
.

- \rightarrow Investigate M_{T2} variable in Z₂ and Z₃ models
- \rightarrow Find any observables/features different in Z₂ and Z₃ models

4.1 Review on M_T, variable

M_{T2}¹⁾ primer

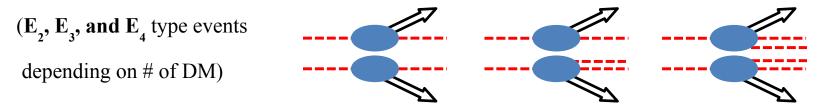

• $M_{\tau\tau}$ variable: generalization of the transverse mass to the case where pair-produced mother particles decay into SM's & DM per mother $M_{T2}(\widetilde{m}) = \min_{\substack{\vec{p}_{\pi}^{\nu(1)} + \vec{p}_{\pi}^{\nu(2)} + \vec{p}_{\pi}^{i(1)}, \vec{p}_{\pi}^{i(2)} = 0}} [\max\{M_{T}^{(1)}, M_{T}^{(2)}\}]$ $M_{T2}^{max}(\widetilde{m} = m_{DM}) = M$ (\widetilde{m} : trial DM/LSP mass, M: mother mass) Kink structure²) (for the case with more than one M_{T2}^{max}


visible/SM particle in each decay chain) due to

two types of solution (balanced/unbalanced)

 \rightarrow direct measurement of DM and mother mass

C.G. Lester, D.J. Summers, Phys. Lett. B463, 99 (1999), arXiv:hep-ph/9906349

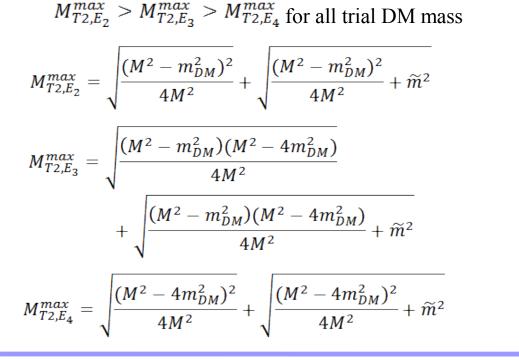

Phenomenology 2012 Symposium

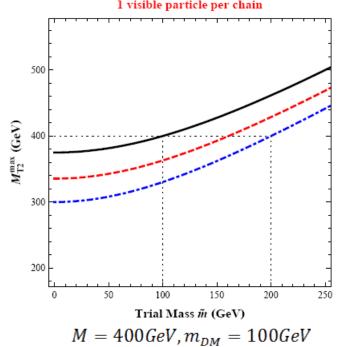
1)

2)

"Naïve" M_{T2} method

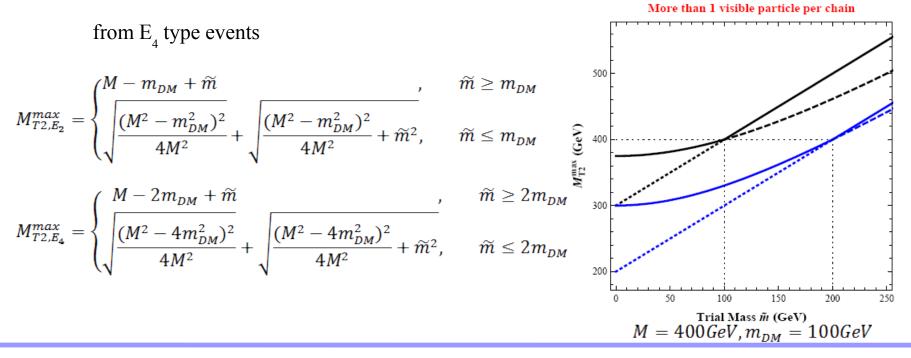
• Each mother emits one or two DM: 2, 3, or 4 DM in the final state


- Still apply M_{T2} variable assuming only 1 DM in each decay chain \rightarrow <u>"Naïve" M_{T2} method</u>
- Will provide different/contradictory and more features compared with Z_2 cases


Theoretical prediction on the upper edge

- Find the situation to yield the upper edge in M_{T2} distribution
- Consider the "effective" mass of invisible particles
 - as well as the effective mass of visible particles in the sense of M_{T_2} variable

One visible/SM particle in each decay chain


- No kink structure as expected
- Three different upper edges corresponding to three different types of events

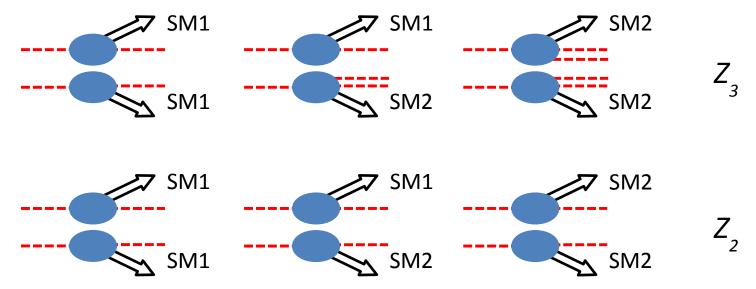
More than one visible/SM particle in each decay chain

- Kink appears as expected, but not always for E_{3}
- Determine mother and DM masses by kink from E_2 type events, and cross check by the kink

E₃ type events under **M**_{T2}

- Asymmetric in the final states of both decay sides
- · Kink appears depending on the mass hierarchy between mother and DM masses

$$M_{T2,E_{3}}^{max} = M - m_{DM} + \tilde{m} \text{ for all } \tilde{m}$$


$$M_{T2,E_{3}}^{max} = \begin{cases} M - m_{DM} + \tilde{m} & , & \tilde{m} \ge m' \\ \sqrt{\frac{(M^{2} - m_{DM}^{2})(M^{2} - 4m_{DM}^{2})}{4M^{2}}} + \\ \sqrt{\frac{(M^{2} - m_{DM}^{2})(M^{2} - 4m_{DM}^{2})}{4M^{2}}} + \tilde{m}^{2}, & \tilde{m} \le m' \end{cases}$$

$$m' = \frac{(M - m_{DM})(\sqrt{(M^{2} - m_{DM}^{2})(M^{2} - 4m_{DM}^{2})} - M(M - m_{DM})}{2M(M - m_{DM}) - \sqrt{(M^{2} - m_{DM}^{2})(M^{2} - 4m_{DM}^{2})}}$$

$$Trial Mass \tilde{m} (GeV)$$

3 decay topologies

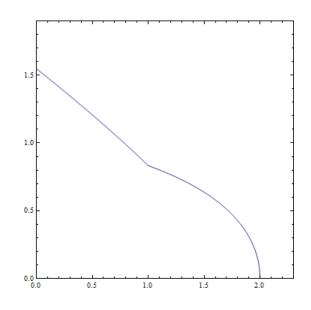
· SM state with 1 DM is different from SM state with 2DM

• Main idea: Three different types of event/richer structures in the sense of M_{T2} variable

One visible/SM particle in each decay chain

- Z_2 case: Only one common upper edge (1DM + 1DM only)
- Z₃ case: Three different upper edges in M_{T2} distribution (1 DM + 1DM, 1DM + 2DM, 2DM + 2DM) → Two of them for separate measurement of mother and DM masses, remaining one for cross-check in spite of a kink

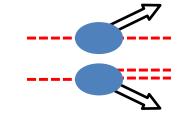
More than 1 visible/SM particle in each decay chain


- Z_2 case: Only one upper edge, and a kink structure at (trial m_{DM}) = (real m_{DM})
- Z_3 case: 2 edges for (trial m_{DM}) \geq (real m_{DM}), 3 edges for (trial m_{DM}) < (real m_{DM}), and also kink structure in each type of events \rightarrow Measurement of mother and DM masses from (1DM +1DM) give predictions on upper edges & kink location for the other two types of events

Possible trials

- No way to separate E_2 , E_3 , and E_4 simply by particle identities \rightarrow Only combined distribution
- 1 visible particle in each decay chain: Kinks in M_{T_2} distribution at the upper edges for E_3 , E_4 ?
 - \rightarrow Not clear due to longer tails
 - \rightarrow Smearing effect/Statistical fluctuations
- More than 1 visible particle in each decay chain:
 - \rightarrow Still hard to see this kink

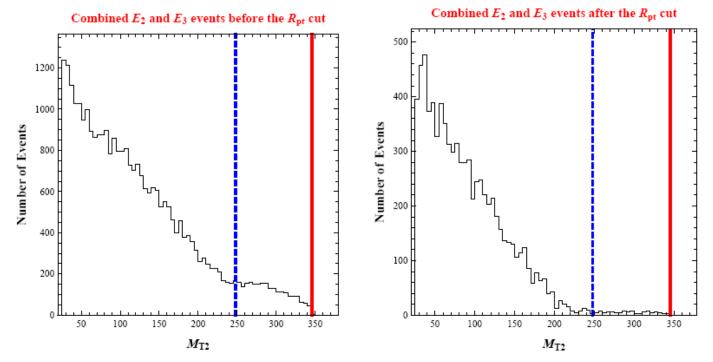
➡> Introduction of a new method


- → Separate E_3 events from combined events (using imbalance of E_3 type events in both decay sides)
- \rightarrow Do the same analysis for the separated events

Pt/Ht ratio cut

- Employ the fact that E_3 type events are asymmetric in the final state while E_2 are symmetric: 2DM side carries less momentum/energy than 1DM side, on average
- Define P_t/H_t ratio

$$R_{Pt} = \frac{P_t^{max}}{P_t^{min}} \qquad R_{Ht} = \frac{H_t^{max}}{H_t^{min}}$$



- Expect many E_2 type events give 1 vs. many E_3 type events give >1
- · Remove/keep decay events by imposing ratio cuts
- Compare survival rates among different types of events
- Re-do M_{T2} analysis after cuts as further confirmation: for Z_3 upper edge will shift down

(especially, to distinguish Z_3 from Z_2 + neutrino)

One visible/SM particle in each decay chain

• Solid red – theoretical E_2 edge, dotted blue – theoretical E_3 edge $M = 400 GeV, m_{DM} = 150 GeV, \widetilde{m} = 25 GeV R_{Pt} \text{ cut} = 5 E_2 : E_3 = 1:2$

Phenomenology 2012 Symposium

More than one visible/SM particle in each decay chain

- Solid red – theoretical E_2 edge, dotted blue – theoretical E_3 edge $M = 400 \, GeV, m_{DM} = 150 \, GeV, \tilde{m} = 25 \, GeV$ $R_{Ht} \text{ cut} = 5$ $E_2 : E_3 = 1:2$ Combined E_2 and E_3 events before the R_{Ht} cut $2000 \int_{1500}^{2000} \int_{15$

250

300

350

50

100

150

200

 M_{T2}

200

 M_{T2}

150

50

100

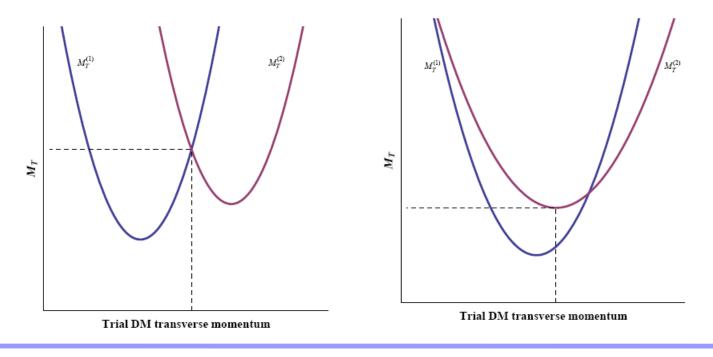
300

350

250

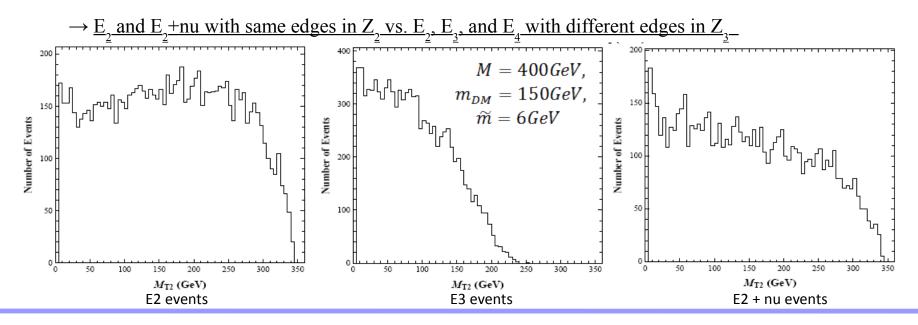
5. Summary

We have learned that...

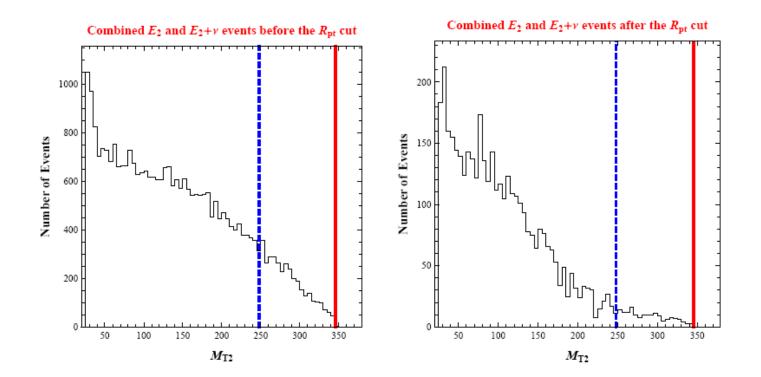

- DM stabilization symmetry does \underline{NOT} have to be Z_{2}
- Mother particle decays in $Z_3 \rightarrow$ More structure \rightarrow Can be distinguished from Z_2
- 2,3, and 4 DM in the final state for Z_3 while 2 DM for Z_2
- Non-identical visible particle(s) : **NUMBER of UPPER EDGES in M**₁₂ from multiple decay topologies/M₁₂ distributions in Z_3
- Identical visible particle(s): event separation by <u>Pt/Ht RATIO CUT</u> → number of upper edges

A follow-up paper will come out soon. Stay tuned!

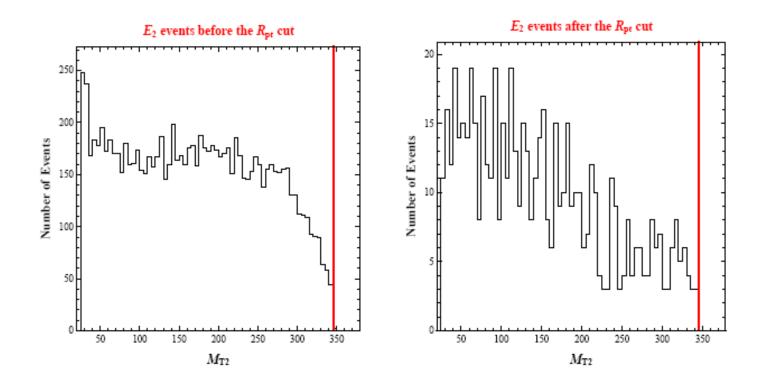
Thank You


M_{T2} primer: balanced and unbalanced solutions

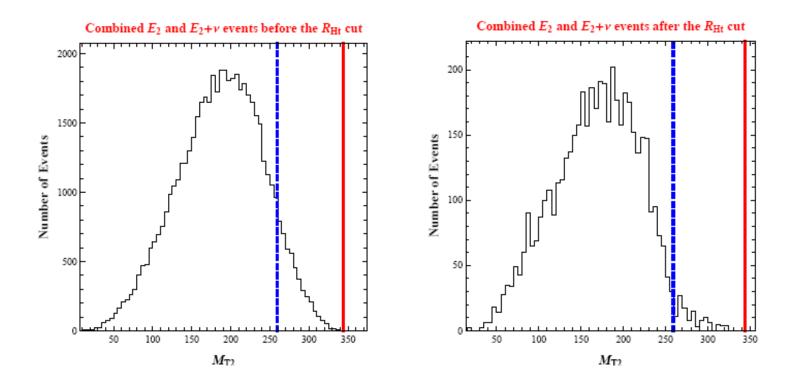
- Balanced solution: intersection between two M_T 's = M_{T2}
- Unbalanced solution: intersection between two M_T 's > M_{T2}

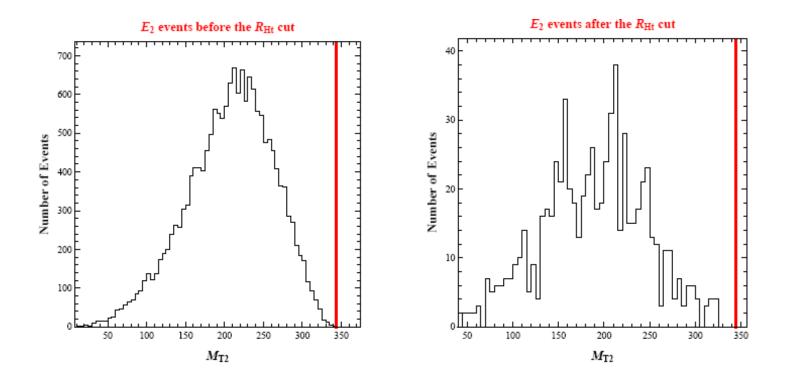

Shapes of M_{T2} distribution

- (Relatively) longer tail for E_3 and E_4 type events: more physical constraints (e.g. rapidity) between decay products should be satisfied
- Adding neutrino \rightarrow relatively longer tail than pure E_2 , but still distinguishable!

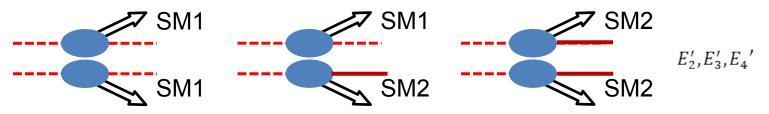


Phenomenology 2012 Symposium


One visible/SM particle in each decay chain (E₂+nu)


One visible/SM particle in each decay chain (E₂)

More than one visible/SM particle in each decay chain (E₂+nu)



More than one visible/SM particle in each decay chain (E_2)

Signal fakes

• (Effective) second invisible particle (e.g. another DM, collider-stable invisible, on-shell intermediate particle whose decay products are all invisible)

• Three upper edges in M_{T2} distribution **NOT because of # of DM BUT because of another DM-like** particle \rightarrow Can be resolved!

 \rightarrow One SM/visible in each decay chain: **SHAPE** (3 clear sharp upper edges vs. 1 sharp edge + 2 (relatively) longer tailed edges

 \rightarrow More than 1 SM/visible in each decay chain: 1) mother and DM masses from kink in M_{T2}^{max} vs.

trial m_{DM} 2) Predictions on upper edges of E_3 , E_4 3) Good matches only for Z_3

Phenomenology 2012 Symposium

Signal fakes

- E_2', E_3' , and E_4' type events are combined
- One visible particle in each decay chain

 \rightarrow Two sharp kinks in the middle of the distribution: E_3 ' and E_4 ' have only 1 DM in each decay chain

• More than 1 SM/visible in each decay chain

 \rightarrow 1) mother and DM masses from kink in M_{T2}^{max} vs. trial m_{DM} 2) Predictions on upper edges for the other types of events 3) Event separation by Pt/Ht ratio cut 4) Good matches only for Z₃