Jet scaling for vetos in Higgs searches

Erik Gerwick

Universität Göttingen

May 7, 2012

Based on: EG, Plehn, Schumann; PRL 108.032003, 2012; hep-ph/1108.3335 Englert, EG, Plehn, Schichtel, Schumann; hep-ph/1110.1043

Jet ratios as a handle on multi-jets

Motivation for understanding multi-jets rates

- High-multiplicities crucial for SM measurements [top properties...]
- Background for BSM searches [SUSY cascades, new colored states, black holes, ...]
- Jet vetos require an understanding of exclusive jet rates

Why are jet ratios a convenient observable for study?

- Experimentally: systematics tend to cancel.
- Theoretical: scale uncertainties also tends to be weaker
- Visually: easy to interpret and much easier to see scaling patterns

$$R_{n+1/n} \equiv \frac{\sigma_{n+1}}{\sigma_n}$$

Observed Scaling Patterns

Staircase [Steve Ellis, Kleiss, Stirling (1985); Giele, Berends (1989)]

- Ratios are constant

$$\sigma_n^{\text{exclv}} \sim R_0^n \equiv e^{-bn}$$

 $\Rightarrow \frac{\sigma_{n+1}}{\sigma_n} = e^{-b} = R_0$

- Observed: UA2, Tevatron, LHC

0.5 0.45 σ_{n+1} $pp \rightarrow ii + \text{jets } at 7 \text{ TeV}$ 0.4 σ_n 0.35 0.3 0.25 ·····**A**········· 0.2 0.15 E 0.1 0.05 E 0 ω 4 5 п

Poisson [Rainwater, Summers, Zeppenfeld (1997)]

- Ratios are not constant

$$\sigma_n^{\text{exclv}} \sim e^{-\bar{n}} \bar{n}^n / n!$$

 $\Rightarrow \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$

- Observed: e.g. photons at LEP

Observed Scaling Patterns

Staircase [Steve Ellis, Kleiss, Stirling (1985); Giele, Berends (1989)]

- Ratios are constant

$$\sigma_n^{\text{exclv}} \sim R_0^n \equiv e^{-bn}$$

 $\Rightarrow \frac{\sigma_{n+1}}{\sigma_n} = e^{-b} = R_0$

- Observed: UA2, Tevatron, LHC

0.5 0.45 σ_{n+1} $pp \rightarrow jj + {
m jets} \ at \ 7 \ {
m TeV}$ 0.4 σ_n 0.35 0.3 0.25 ·····**A**········· 0.2 0.15 E 0.1 0.05 E 0 ω 4 5 п

Poisson [Rainwater, Summers, Zeppenfeld (1997)]

- Ratios are not constant

$$\sigma_n^{\text{exclv}} \sim e^{-\bar{n}} \bar{n}^n / n!$$
$$\Rightarrow \frac{\sigma_{n+1}}{\sigma_n} = \frac{\bar{n}}{n+1}$$

- Observed: e.g. photons at LEP

What is the physics behind jet scaling behavior?

- Spectrum of radiated photon emissions in QED are a Poisson distribution [Peskin & Schroder]

$$\sigma_n ~\sim~ rac{L^n}{n!} e^{-L} \qquad ext{with} \qquad L ~\sim~ rac{lpha}{\pi} \log\left(rac{E_{ extsf{hard}}}{E_{ extsf{soft}}}
ight)$$

- Correlations between jet emissions break Poisson scaling
 - the most important deviation is due to secondary splittings of gluons. [see parton shower approximation]

2. Can return to the Poisson in QCD by enforcing a large ratio between jet energies, in which case primary emissions are enhanced.

What is the physics behind jet scaling behavior?

 Spectrum of radiated photon emissions in QED are a Poisson distribution [Peskin & Schroder]

$$\sigma_n \sim rac{L^n}{n!} e^{-L}$$
 with $L \sim rac{lpha}{\pi} \log\left(rac{E_{hard}}{E_{soft}}
ight)$

- Correlations between jet emissions break Poisson scaling
 - the most important deviation is due to secondary splittings of gluons. [see parton shower approximation]

2. Can return to the Poisson in QCD by enforcing a large ratio between jet energies, in which case primary emissions are enhanced.

Central Jet vetos in Higgs searches [EG, Plehn, Schumann]

– Require widely separated ($\eta > 4.4$), hard $m_{jj} > 600 \text{ GeV}$ tagging jets and veto "in-between" QCD activity (jets $p_{\perp} > 30 \text{ GeV}$)

Before Weak Boson Fusion cuts

– WBF and Z+ jets background follow a (fairly) flat staircase distribution

Central Jet vetos in Higgs searches [EG, Plehn, Schumann]

– Require widely separated ($\eta > 4.4$), hard $m_{jj} > 600 \text{ GeV}$ tagging jets and veto "in-between" QCD activity (jets $p_{\perp} > 30 \text{ GeV}$)

After Weak Boson Fusion cuts

- After cuts Z+jets background quickly becomes Poisson (WBF not)

Validation of tools and scaling hypothesis

Atlas study on jets between gaps as a function of p_{\perp} and Δy

based on RIVET public-analysis from ATLAS JHEP 1109 (2011) 053

Same for Z + jets analysis/figures

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions

- Ratio of exclusive jet rates are an interesting from a theory perspective and relevant for predicting jet veto efficiencies.
- Many opportunities to study the Poisson distribution in other n_{jet} distributions, for example
 - Z/γ + jets with a large leading jet p_{\perp} .
 - Pure QCD di-jets with a large rapidity gap.
 - $t\bar{t} \rightarrow b\bar{b}WW^* \rightarrow l\nu l\nu + jets?$
- The fact that QCD jet cross-sections do not follow a Poisson distribution (unless a large final state logarithm is present) is primarily the result of secondary splittings.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Suspect more pheno applications...we're thinking about this!

The challenge for theoretical predictions at the LHC

Calculational techniques for multi-jets

- Leading order calculations suffer from scale uncertainty
- Difference between two (equally good) scale choices μ and $\bar{\mu}$

$$\sigma_{n-\text{jets}}^{\text{LO}}(\bar{\mu}) - \sigma_{n-\text{jets}}^{\text{LO}}(\mu) \sim \alpha_{S}^{n}\left(n b_{0} \alpha_{S} \ln \frac{\bar{\mu}^{2}}{\mu^{2}}\right)$$

- NLO calculation less scale sensitive but not always available [pure jets $n \le 4$] [Hoeche et al. Blackhat]
- Also, there are selections/processes/observables with large logarithms

$$\alpha_s \log\left(rac{Q}{Q_0}
ight) ~\sim~ 1$$

- Analytic techniques to resum large logarithms available [but limitations]

The challenge for theoretical predictions at the LHC

Examples of theoretical tools pushed to their limit

- MonteCarlo Matrix-Element/Parton-Shower methods flexible tools including some LO, NLO and logarithmic effects
- Good general agreement between early data and MonteCarlo methods
- But...inherent limitations on PS evolution is <u>the</u> largest uncertainty in many analysis. [*i.e.* signal modelling MC@NLO vs. POWHEG]

Jet scaling

- New tools for understanding multi-jet events always welcome.
- The idea of jet scaling may be one of them but...in what observable do we look

SQC.

Jet ratios as a handle on scaling and multi-jet rates

 σ_n is the exclusive *n* jet cross section (in addition to core process jets)

$$R_{n+1/n} \equiv \frac{\sigma_{n+1}}{\sigma_n}$$

Why are jet ratios a convenient observable for study?

- Experimentally: systematics tend to cancel.
- Theoretical: scale uncertainties also tends to be weaker
- Visually: easy to interpret and much easier to see patterns [see next slide]

From Atlas Phys. Rev. D85 (2012) 032009

Jet scaling in the data

FInding patterns in current analysis

- Both patterns observed in QCD processes (depending on cuts)
- For staircase: $R_{excl} = R_{incl}$ [Englert, Plehn, Schichtel, Schumann]
- For Poisson:

QED and the emergence of Poisson scaling

Basic synopsis of Poisson radiation pattern from QED [Peskin & Schroder; Weinberg]

- Fully factorized form of the matrix element (Eikonal approximation)
- Phase space factor 1/n! for identical bosons in the final state

$$\Rightarrow \sigma_n \sim \frac{L^n}{n!} e^{-L} \qquad \text{with} \qquad L \sim \frac{\alpha}{\pi} \log\left(\frac{E_{hard}}{E_{soft}}\right)$$

Crucial theorem: Addition of independent Poisson processes

- Suppose two Poisson processes N_1 and N_2 with Poisson expectations \bar{n}_1 and \bar{n}_2 are independent. The counting process N defined by $N(t) = N_1(t) + N_2(t)$ is a Poisson process with rate function \bar{n} given by $\bar{n} = \bar{n}_1 + \bar{n}_2$.

 \Rightarrow All QED processes give Poisson [in soft collinear limit]

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Extension of the (pure Poisson) exponentiation model [Rainwater, Zeppenfeld]
- Simple analogy; each emission generates a new Poisson process with separate Poisson parameter \bar{n}^\prime

$$P(4,\bar{n},\bar{n}') \sim e^{-\bar{n}-4\bar{n}'}\frac{\bar{n}^4}{4!} + \frac{1}{2}e^{-\bar{n}-4\bar{n}'}\bar{n}^3\bar{n}' + \frac{3}{2}e^{-\bar{n}-4\bar{n}'}\bar{n}^2\bar{n}'^2 + e^{-\bar{n}-4\bar{n}'}\bar{n}\bar{n}'^3$$

- Extension of the (pure Poisson) exponentiation model [Rainwater, Zeppenfeld]
- Simple analogy; each emission generates a new Poisson process with separate Poisson parameter \bar{n}^\prime

$$P(4,\bar{n},\bar{n}') \sim e^{-\bar{n}-4\bar{n}'}\frac{\bar{n}^4}{4!} + \frac{1}{2}e^{-\bar{n}-4\bar{n}'}\bar{n}^3\bar{n}' + \frac{3}{2}e^{-\bar{n}-4\bar{n}'}\bar{n}^2\bar{n}'^2 + e^{-\bar{n}-4\bar{n}'}\bar{n}\bar{n}'^3$$

- Extension of the (pure Poisson) exponentiation model [Rainwater, Zeppenfeld]
- Simple analogy; each emission generates a new Poisson process with separate Poisson parameter \bar{n}^\prime

$$P(4,\bar{n},\bar{n}') \sim e^{-\bar{n}-4\bar{n}'}\frac{\bar{n}^4}{4!} + \frac{1}{2}e^{-\bar{n}-4\bar{n}'}\bar{n}^3\bar{n}' + \frac{3}{2}e^{-\bar{n}-4\bar{n}'}\bar{n}^2\bar{n}'^2 + e^{-\bar{n}-4\bar{n}'}\bar{n}\bar{n}'^3$$

- Extension of the (pure Poisson) exponentiation model [Rainwater, Zeppenfeld]
- Simple analogy; each emission generates a new Poisson process with separate Poisson parameter \bar{n}^\prime

$$P(4,\bar{n},\bar{n}') \sim e^{-\bar{n}-4\bar{n}'}\frac{\bar{n}^4}{4!} + \frac{1}{2}e^{-\bar{n}-4\bar{n}'}\bar{n}^3\bar{n}' + \frac{3}{2}e^{-\bar{n}-4\bar{n}'}\bar{n}^2\bar{n}'^2 + e^{-\bar{n}-4\bar{n}'}\bar{n}\bar{n}'^3$$

- Extension of the (pure Poisson) exponentiation model [Rainwater, Zeppenfeld]

- Limit of "gluon" dominated $(\bar{n}' \gg \bar{n})$ evolution gives staircase scaling
- Agrees with intuition of factorial growth of pure YM amplitudes
- Also computable result at LL for pure gluon initiated jet [Konishi, Veniziano]

1. Generate core process with set of outgoing particle momenta

2. Attach to each external line Sudakov form factor [no-splitting probability]

$$\Delta^i(q) = \exp\left\{-\int_{Q_0}^q dt\,\Gamma^i(q,t)
ight\}\,.$$

- 3. Integrate virtuality q from hard scale to hadronization scale
- 4. With each splitting, attach a new Sudakov and repeat

- 1. Generate core process with set of outgoing particle momenta
- 2. Attach to each external line Sudakov form factor [no-splitting probability]

$$\Delta^i(q) = \exp\left\{-\int_{Q_0}^q dt\, \Gamma^i(q,t)
ight\}\,.$$

- 3. Integrate virtuality q from hard scale to hadronization scale
- 4. With each splitting, attach a new Sudakov and repeat

- 1. Generate core process with set of outgoing particle momenta
- 2. Attach to each external line Sudakov form factor [no-splitting probability]

$$\Delta^i(q) = \exp\left\{-\int_{Q_0}^q dt\,\Gamma^i(q,t)
ight\}\,.$$

- 3. Integrate virtuality q from hard scale to hadronization scale
- 4. With each splitting, attach a new Sudakov and repeat

- 1. Generate core process with set of outgoing particle momenta
- 2. Attach to each external line Sudakov form factor [no-splitting probability]

$$\Delta^i(q) = \exp\left\{-\int_{Q_0}^q dt\,\Gamma^i(q,t)
ight\}\,.$$

- 3. Integrate virtuality q from hard scale to hadronization scale
- 4. With each splitting, attach a new Sudakov and repeat

Final state parton cascade

1. All radiative emissions start off as a Poisson process [expand "core-process" Sudakov]

$$\Delta_q = 1 - \Gamma_q + \frac{1}{2}\Gamma_q^2 + \cdots = \left(+ \frac{1}{2} + \cdots \right)$$

2. Secondary emissions break Poisson scaling ${}_{[e.g.\ e^+e^-\rightarrow jets]}$

$$\sim$$
 $\Gamma_q \otimes \Gamma_g$

3. Relative size of primary and secondary splitting processes give us \bar{n}'

Subsequent splittings and the emergence of staircase More realistic model: $e^+e^- o qar q$ + jets

- Leading log and next-to-leading log jet rates available for the Durham measure (we calculate to $O(\alpha^4)$) [Catani, Dokshitzer, Olsson, Turnock, Webber (1991): Webber (2010)]

$$L\equiv\lograc{1}{y_{ ext{cut}}}$$
 and $a\equivlpha_{S}/\pi$

- Purely abelian terms from qg splitting exponentiate

$$\begin{split} f_2^D &= 1 - a\frac{C_E}{2}L^2 + a^2\frac{C_E^2}{8}L^4 - a^3\frac{C_E^3}{48}L^6 + a^4\frac{C_E^4}{384}L^8 \\ f_3^D &= a\left(\frac{C_E}{2}\right)L^2 - a^2\left(\frac{C_E^2}{4}\right) + \frac{C_FC_A}{48}L^4 + a^3\left(\frac{C_E^3}{16}\right) + \frac{C_F^2C_A}{96} + \frac{C_FC_A^2}{960}\right)L^6 - a^4\left(\frac{C_E^4}{96}\right) + \frac{C_F^2C_A}{384} + \frac{C_FC_A^3}{1200}L^8 \\ f_4^D &= a^2\left(\frac{C_E^2}{8}\right) + \frac{C_FC_A}{48}L^4 - a^3\left(\frac{C_E^3}{16}\right) + \frac{C_F^2C_A}{48} + \frac{7C_FC_A^2}{2880}\right)L^6 + a^4\left(\frac{C_E^4}{64}\right) + \frac{C_F^2C_A}{128} + \frac{C_FC_A^2}{512}L^2 + \frac{C_FC_A^2}{5120}L^8 \\ f_5^D &= a^3\left(\frac{C_E^3}{48}\right) + \frac{C_FC_A}{96} + \frac{C_FC_A^2}{720}L^6 - a^4\left(\frac{C_E^4}{96}\right) + \frac{C_F^2C_A}{128} + \frac{3C_F^2C_A^2}{1280} + \frac{41C_FC_A^3}{161280}L^8 \\ f_6^D &= a^4\left(\frac{C_A^4}{384}\right) + \frac{C_F^2C_A}{384} + \frac{7C_FC_A^2}{7680} + \frac{17C_FC_A^2}{161280}L^8 \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Subsequent splittings and the emergence of staircase More realistic model: $e^+e^- o qar q$ + jets

- Leading log and next-to-leading log jet rates available for the Durham measure (we calculate to $O(\alpha^4)$) [Catani, Dokshitzer, Olsson, Turnock, Webber (1991): Webber (2010)]

$$L\equiv\lograc{1}{y_{ ext{cut}}}$$
 and $a\equivlpha_{S}/\pi$

- Purely Abelian terms from qg splitting exponentiate

$$\begin{split} & f_2^D = \exp\left[-\frac{aC_FL^2}{2}\right] \\ & f_3^D = \left[\frac{aC_FL^2}{2}\right] \exp\left[-\frac{aC_FL^2}{2}\right] - a^2 \left(\frac{C_FC_A}{48}\right) L^4 + a^3 \left(\frac{C_F^2C_A}{96} + \frac{C_FC_A^2}{960}\right) L^6 - a^4 \left(\frac{C_F^3C_A}{384} + \frac{C_F^2C_A^2}{1920} + \frac{C_FC_A^3}{21504}\right) L^8 \\ & f_4^D = \frac{1}{21} \left(\frac{aC_FL^2}{2}\right)^2 \exp\left[-\frac{aC_FL^2}{2}\right] + a^2 \left(\frac{C_FC_A}{48}\right) L^4 - a^3 \left(\frac{C_F^2C_A}{48} + \frac{7C_FC_A^2}{2880}\right) L^6 + a^4 \left(\frac{C_F^2C_A}{128} + \frac{C_F^2C_A^2}{512} + \frac{C_FC_A^3}{5120}\right) L^8 \\ & f_5^D = \frac{1}{31} \left(\frac{aC_FL^2}{2}\right)^3 \exp\left[-\frac{aC_FL^2}{2}\right] + a^3 \left(\frac{C_F^2C_A}{96} + \frac{C_FC_A^2}{720}\right) L^6 - a^4 \left(\frac{C_F^3C_A}{128} + \frac{3C_F^2C_A^2}{1280} + \frac{41C_FC_A^3}{161280}\right) L^8 \\ & f_6^D = \frac{1}{41} \left(\frac{aC_FL^2}{2}\right)^4 \exp\left[-\frac{aC_FL^2}{2}\right] + a^4 \left(\frac{C_F^2C_A}{384} + \frac{7C_FC_A^2}{7680} + \frac{17C_FC_A^3}{161280}\right) L^8 \\ & (128) + (128)$$

Subsequent splittings and the emergence of staircase More realistic model: $e^+e^- o qar q$ + jets

- Leading log and next-to-leading log jet rates available for the Durham measure (we calculate to $O(\alpha^4)$) [Catani, Dokshitzer, Olsson, Turnock, Webber (1991): Webber (2010)]

$$L\equiv\lograc{1}{y_{ ext{cut}}}$$
 and $a\equivlpha_{ extsf{S}}/\pi$

- Non-abelian terms do not simply exponentiate!

$$f_{2}^{D} = \exp\left[-\frac{aC_{F}L^{2}}{2}\right]$$

$$f_{3}^{D} = \left[\frac{aC_{F}L^{2}}{2}\right] \exp\left[-\frac{aC_{F}L^{2}}{2}\right] - s^{2} \left(\frac{C_{F}C_{A}}{48}\right) L^{4} + s^{3} \left(\frac{C_{F}^{2}C_{A}}{96} + \frac{C_{F}C_{A}^{2}}{960}\right) L^{6} - s^{4} \left(\frac{C_{F}^{3}C_{A}}{384} + \frac{C_{F}^{2}C_{A}^{2}}{1920} + \frac{C_{F}C_{A}^{3}}{21504}\right) L^{8}$$

$$f_{4}^{D} = \frac{1}{2!} \left(\frac{sC_{F}L^{2}}{2}\right)^{2} \exp\left[-\frac{sC_{F}L^{2}}{2}\right] + \frac{s^{2} \left(\frac{C_{F}C_{A}}{48}\right) L^{4} - s^{3} \left(\frac{C_{F}^{2}C_{A}}{48} + \frac{7C_{F}C_{A}^{2}}{2880}\right) L^{6} + s^{4} \left(\frac{C_{F}^{3}C_{A}}{1288} + \frac{C_{F}^{2}C_{A}^{2}}{512} + \frac{C_{F}C_{A}^{3}}{5120}\right) L^{8}$$

$$f_{5}^{D} = \frac{1}{3!} \left(\frac{sC_{F}L^{2}}{2}\right)^{3} \exp\left[-\frac{sC_{F}L^{2}}{2}\right] + \frac{s^{3} \left(\frac{C_{F}^{2}C_{A}}{96} + \frac{C_{F}C_{A}^{2}}{720}\right)}{s^{3}} L^{6} - s^{4} \left(\frac{C_{F}^{3}C_{A}}{1280} + \frac{41C_{F}C_{A}^{3}}{161280}\right) L^{8}$$

$$f_{6}^{D} = \frac{1}{4!} \left(\frac{sC_{F}L^{2}}{2}\right)^{4} \exp\left[-\frac{sC_{F}L^{2}}{2}\right] + \frac{s^{4} \left(\frac{C_{F}^{2}C_{A}}{384} + \frac{7C_{F}C_{A}^{2}}{7600} + \frac{17C_{F}C_{A}^{3}}{161280}\right)}{s^{3}} L^{8}$$

- Leading log jet rate ratios in $e^+e^-
 ightarrow$ jets flatter than Poisson $_{ ext{[higher multiplicities]}}$
- Still not enough to completely explain the data in Drell-Yan

Important differences between QED and QCD

Deviation from Poisson must be the result of one of the following

1. QED Poisson scaling is derived in the soft-collinear limit.

Corrections due to hard matrix elements

2. QCD has (logarithmically equivalent) subsequent splittings (gluon 3-pt)

 \Rightarrow Secondary emissions \checkmark

3. Different kinematics due to PDFs

 \Rightarrow Relative cost of an additional jet depends on previous jets

Estimating the effect due to PDFs

 The ratio of exclusive cross-sections contains a ratio of PDF's evaluated at different typical scales

$$R_{(n+1)/n} \sim rac{f(x_{n+1}, Q_{n+1})}{f(x_n, Q_n)}$$

 Measure of the suppression on exclusive multiplicities given by the (discrete) 2nd-derivative with respect to x.

$$B(n, Q) = \frac{|F(x_{n+1}, Q_{hard})|^2}{F(x_n, Q_{hard}) F(x_{n+2}, Q_{hard})}$$

- Two representative kinematic extremes
 - 1. Z recoils against jets
 - 2. Each jet costs moves x by $\delta x = p_{\perp}/\sqrt{s}$
- Choose factorization scale below the jet scale [exclusive jet rates]

Estimating the effect due to PDFs

Lowest bin most affected and effect decreases with multiplicity

Important differences between QED and QCD

Deviation from Poisson must be the result of one of the following

1. QED Poisson scaling is derived in the soft-collinear limit

 \Rightarrow Corrections due to hard matrix elements

2. QCD has subsequent splittings via gluon 3-point vertex

 \Rightarrow Secondary emissions \checkmark

3. Different kinematics due to PDFs

 \Rightarrow Relative cost of an additional jet depends on previous jets \checkmark

The return to Poisson scaling in QCD

Observation: Poisson distribution returns when we require a hard final state jet

- PDF effect disappears as we move to higher X [example Drell-Yan]

- Large logarithm drives evolution along a single line [explains why we do not see Poisson scaling in color singlet exchange]
- Primary (abelian) emission off the hard color line are dynamically enhanced [see generating functional formalism]
- Note that inducing a large initial state logarithm (*e.g.* cut on the lepton invariant mass) is <u>not</u> sufficient to induce the Poisson behaviour [again fixed energy jet rates imply this]

Summary slide on the origins of scaling patterns

1. Jet ratios show two scaling patterns:

Poisson or staircase

- 2. Poisson scaling is a fundamental result which can most easily be seen by expanding the Sudakov form factor off a given hard line
- Staircase scaling is not a fundamental consequence of QCD but a fortuitous <u>semi-coincidence</u> of two effects:

secondary emissions and PDF suppression .

4. We can undo both effects by imposing a large final state logarithm, and return to Poisson scaling

Erik Gerwick: Jet scaling for vetos in Higgs searches

Applications

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ = ● ● ●

Deserted island physics!

Deserted island physics: calculate the (normalized) Drell Yan N_{jet} ratios

Modern way (with technology)

- 1. Find favorite parton shower MC
- 2. Wait a while (couple of days?)
- 3. Compute each N_{jet} cross-section
- 4. Divide rates to obtain ratios

Island way (scaling arguments)

- 1. Everything starts as a Poisson
- 2. Add 1st order inhomogeneity [from

 $g \rightarrow gg$ splitting functions]

$$ar{n} \sim 1 \qquad ar{n}' \sim rac{C_A}{12C_F}$$

- 3. Evaluate PDF function B
- 4. Fold together!

1. All radiative emissions start off as a Poisson process

- 2. Secondary emissions break Poisson scaling [model non-homogenous Poisson process]
- 3. PDF kinematics mean that cost of producing additional jets is n dependent

- 1. All radiative emissions start off as a Poisson process
- 2. Secondary emissions break Poisson scaling [model non-homogenous Poisson process]
- 3. PDF kinematics mean that cost of producing additional jets is n dependent

- 1. All radiative emissions start off as a Poisson process
- 2. Secondary emissions break Poisson scaling [model non-homogenous Poisson process]
- 3. PDF kinematics mean that cost of producing additional jets is n dependent

(日)、(型)、(目)、(目)、(目)、(の)、(の)

Jet Vetos in Higgs searches

Higgs searches via Weak Boson Fusion

- Early sensitivity in $H o WW^{\star}/ au au/\gamma\gamma$ [both Atlas and CMS dedicated WBF searches]
- Large background from V(V) + jets at $\mathcal{O}(\alpha_s^2)$

Central Jet Veto [or how QCD can actually help us for once!]

- Widely separated (in η) tagging jets and veto "in-between" QCD activity
- Signal gives less soft in-between QCD radiation [Rainwater, Zeppenfeld]
- *N_{jet}* distribution give us valuable information on central jets

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Predicting Central Jet veto efficiencies

Weak Boson Fusion cuts

- 1. Identify tagging jets with $|y_1 y_2| > 4.4$ and $m_{jj} > 600$ GeV
- 2. Veto events with an additional central jet satisfying $p_{\perp} > 20~{
 m GeV}$
- 3. Define the 2-jet exclusive cross section for signal and background

Theoretical difficulties in the WBF jet veto computation

- The second step induces a large logarithm $\sim \log\left(rac{p_{
 m veto}}{n_{
 m veto}}
 ight)$
- Cannot trust fixed order calculations (single emission probability > 1)
- Analytic resummation available in some cases [Delgado, Forshaw, Marzani, Seymour]
- The only general method involves Parton-Shower [preferably with matrix element matching]

Validation of theoretical tools in H
ightarrow au au [EG, Plehn, Schumann]

Before Weak Boson Fusion cuts

- WBF and Z+ jets background follow a flat staircase distribution

Veto Probabilities

 Can use Poisson fit to calculate veto probability taking into account all multi-jet contributions.

$$P_{veto} = e^{-\bar{n}}$$

- Many (data rich) processes available for comparison [QCD gap fraction, Z/W/y + jets]

Validation of theoretical tools in H
ightarrow au au [EG, Plehn, Schumann]

After Weak Boson Fusion cuts

- Z+jets background quickly becomes Poisson, while WBF does not

Veto Probabilities

 Can use Poisson fit to calculate veto probability taking into account all multi-jet contributions.

$$P_{veto} = e^{-\bar{n}}$$

- Many (data rich) processes available for comparison [QCD gap fraction, $Z/W/\gamma + jets$]

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Dijet gap jets and Z + jets

Atlas study on jets between gaps as a function of p_{\perp} and δy

based on data/public-analysis from ATLAS JHEP 1109 (2011) 053

Same for Z + jets analysis/figures

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Conclusions

- Ratio of N_{jet} distributions interesting from a theory perspective and crucial for precise predictions for jet vetos.
- Many opportunities to study the Poisson distribution in other n_{jet} distributions, for example
 - Z/γ + jets with a large leading jet p_{\perp} .
 - ▶ Z+ jets in WBF type of configurations (large η separations), with large average jet p_{\perp} of leading two jets.
 - Pure QCD di-jets with a large rapidity gap.
 - $t\bar{t} \rightarrow b\bar{b}WW^* \rightarrow l\nu l\nu + jets?$
- The fact that QCD cross-section do not at all follow a Poisson distribution (unless a large final state logarithm is present) is the result of a combination of secondary splittings and <u>PDF effects</u>.

- Theoretical origins for scaling patterns mostly understood. Full quantitative study requires resummed jet rates.
- We suspect more Pheno applications...and we're working on this!

$Central \; jet \; vetos \; in \; Higgs \; searches \; {}_{[EG, \; Plehn, \; Schumann]}$

Weak Boson Fusion

- Signal has high $|\eta|$ tagging jets, Z + jets background more likely to radiate additional jets into this region. Impose WBF cuts

$$y_1 \cdot y_2 < 0 ||y_1 - y_2|| > 4.4 m_{jj} > 600 \text{ GeV}$$

- Central jet veto makes this channel relevant. Veto all events with an additional jet satisfying $p_{\tau}^{\text{veto}} > 20 \text{ GeV} \quad \min v_{1,2} < v^{\text{veto}} < \max v_{1,2}$
- For background, Dipole initiated shower contains a large Logarithm.

$$ar{n} \sim \log rac{m_{jj}}{Q_{veto}}$$

- For signal, large log not induced.

Before WBF cuts Higgs WBF 0.6 0.8 Z production EW 0.8 0.6 0.8 Z production QCD $R(\sigma_{n+1}/\sigma_n)$ 3/27/6- 4 回 ト - 4 回 ト - 4 ж **∃** →

Validation of theoretical tools in $H \rightarrow \tau \tau$ [EG, Plehn, Schumann]

The emergence of Jet scaling patterns

- Through simulation we see that WBF cuts induce Poisson scaling [in background]

- Our standard $Z/W/\gamma$ + jets N_{jet} ratios

- For both distribution we can easily compute the survival probability

$$\sigma_2^{\text{exclusive}} = \sigma_2^{\text{inclusive}} e^{-\bar{n}}$$

The origin of Jet scaling patterns

How can we get a handle on non-exponentiable contributions?

- Inhomogenous Poisson processes [each emission emits]

$$P(n,\bar{n},\bar{n}') = e^{-\bar{n}-n\bar{n}'} \sum_{i=0}^{n} \left(\frac{(n-1)!}{i!(n-i-1)!(n-i)!} \right) \bar{n}'^{i} \bar{n}^{n-i}$$

Deviation from Poisson to 1st order \iff compute \bar{n}'

How can we reasonably estimate PDF effect?

- 1. Construct "threshold" kinematics for process and cuts (e.g. Drell-Yan)
- 2. Compute discretized second derivative

$$B = \frac{|F(x_{n+1}, Q)|^2}{F(x_n, Q)F(x_{n+2}, Q)},$$

3. Multiply ratios by B

The return to Poisson scaling

Observation: Poisson distribution returns when we require hard final state jets

- PDF effect disappears as we move to higher X [example Drell-Yan]

- Hard final state jet drives evolution along single line [explains why we do not see Poisson scaling in color singlet exchange]
- Exponentiable wrt core process emission off the hard color line are dynamically enhanced [see generating functional formalism]
- Return to fully factorized form of the matrix element