SM Higgs Searches at the Tevatron

Weiming Yao (LBNL)

On behalf of the CDF and D0 Collaborations

PHENO12, 7-9 May 2012, University of Pittsburgh

Outline

- Introduction
- Overview the Higgs Search Strategies
- Recent Improvements
- Tevatron Results with the full dataset
- Conclusion
- More Details:
- http://www-cdf.fnal.gov/physics/new/hdg/Results.html
- http://www-d0.fnal.gov/Run2Physics/D0Winter2012.html
- http://tevnphwg.fnal.gov/results/SM_Higgs_Winter_12/

Introduction

- •Higgs boson is the remnant of the Higgs field that responsible for the electroweak symmetry breaking.
- •Higgs Mass Limits@95% CL: _Indirect: M_H<152 GeV
 - _Direct: 116<M_H<127 GeV
- •While LHC continue to improve their Higgs reach, Tevatron search of H→bb decay is still competitive and will provide a crucial test on the existence and nature of the Higgs boson.

The Tevatron

- Tevatron: p-pbar collision@1.96TeV, L_{peak} =4.3x10³² cm⁻²s⁻¹
- Delivered ~12 fb⁻¹ data before shutdown on 9/30/2011.
- •Most results presented are based on the full dataset (~10 fb⁻¹)

SM Higgs Production and Decay @ Tevatron

- For lower mass(M_H<135 GeV):
- -Main decay:H→bb in WH/ZH
- Direct production gg→H→bb is
 limited by multi-jet QCD.
- For higher mass(MH>135GeV): Mainly decays: gg→H→WW,ZZ
- Other decays: $H \rightarrow \tau \tau, \gamma \gamma$, and ttH.

The Challenge

- The Challenge is due to that Higgs signal is so tiny compared to other SM process with the same final states.
- Search Strategy has evolved over years:
 - -Maximizing signal acceptances using efficient triggers, lepton ID, and b-tagging that improves S/B to ~1/100.
 - -Using multivariate analysis (MVA) to exploit kinematic differences of S and B that improves S/B to ~1/10.
- Observation of single top, diboson provide solid ground for strategy. Measured σ_{WZ+ZZ} = 1.01±0.21x σ_{SM} in VZ→lvbb,llbb,vvbb search.

MVA ordered by s/b

Low Mass Signatures

- Search for $H \rightarrow bb$ resonance in association with W or Z.
- •WH→lvbb, most sensitive low-mass channel: one lepton+MET+ 2jets
- •Requiring b-tag improves S/B significantly

Improvement of b-tagging

- •CDF and D0 use MVA techniques to improve b-tagging that exploits the decay of long-lived B hadron as displaced tracks/vertices. Typical eff:40-70% with mistag rate:1-5%.
- •Recently CDF combined existing btags into a Higgs optimized b-tagger (HOBIT), which improves eff by 20% while keeping mistag rate same.
- •Eff and mistag rate calibrated using W+1jet, W+3 or more jets(ttbar), and b-enriched inclusive electron data samples.

Improving Multivariate Discriminant

- Most Higgs Analysis uses MVA to improve bkgd rejection with a sensitivity gain of 25%, compared to single variable alone, e.g. dijet mass.
- •We can further improve MVA by training against multiple bkgds, splitting analysis into subchannels based on S/B, e.g. lepton type, number of jets.
- •CDF trained ZH→llbb against ttbar, z+c, diboson, separately to build the final discriminant.

Limits for $H \rightarrow bb$

- Obtained individual Higgs limits for three main low-mass channels.
- Some excess events in CDF data while D0 continues improving their analyses.

 $ZH \rightarrow II b\bar{b}$

D0:llbb

145

M_H (GeV/c²)

High Mass Signatures

- •Search for $H \rightarrow WW$ inclusively that leads to many interesting final states.
- Most sensitive channel is $H \rightarrow WW \rightarrow IIvv$: OS Dilepton + MET + 0,1,2 Jets.
- •Requiring MVA to separate signal from main backgrounds(WW and top).

Limits for H→WW

- •H \rightarrow WW Limit after combining all subchannels(OS+njet, low m₁, SS, trileptons).
- •CDF/D0 have similar sensitivities while its observed limit fluctuated differently.

Other Searches

- •Other Searches($H \rightarrow \tau \tau$, ttH, $H \rightarrow \gamma \gamma$) are also being considered.
- •They're not sensitive in SM. But every bit helps.

Combined Limits on SM Higgs Production

- •Have searched for all possible SM Higgs production and decays and set limits with respect to nominal SM predictions.
- •CDF and D0 in good agreement, combining to improve Tevatron limit.

WH→lvbb ZH→vvbb ZH→llbb $H \rightarrow WW \rightarrow |v|v$ WH/ZH→jjbb ttH→WbWb bb H→γγ Η→ττ VH→(lv,ll)ττ H→WW→lvjj VH→VWW $H \rightarrow ZZ$

Tevatron Sensitivity

•Log-likelihood Ratio help to test data with different signal hypotheses

Expect to see ~ 2 σ excess for Higgs mass at 125 GeV. Data consistent with S+B hypothesis in 115<m_H<135 GeV.

Tevatron Combination

- •Observed Exclusion: 100<M_H<106 & 147<M_H<179 GeV/c²@95%CL.
- Expected Exclusion: 100<M_H<120 & 141<M_H<184 GeV/c²@95%CL.
- •There are >2 σ excess of events in 115<m_{m H}<135 GeV</sub>

Tevatron H→bb, WW Combination

- •Combining $H \rightarrow bb$, WW channels separately to see where excess comes from.
- •Excess is mainly driven by H \rightarrow bb which has >2 σ excess in same mass region.

Quantifying the Excess:

- •Calculating local p-value distribution for background-only hypothesis.
- •Local p-value=2.7 σ at 125GeV gives global p-value=2.2 σ with LEE factor 4.

Fitted Signal Rate

•Fit to data and separately for bb, WW with signal as free parameter.

Compatible with SM Higgs at 125 GeV

- Compared LLR after injecting Higgs(125) to bkgd-only pesudo-experiments.
- •MVA is not optimized for mass, but for S/B separation, expect a broad excess.

Improvements of Higgs Sensitivity

•Achieved Higgs sensitivity over time is close to 1/L, instead of 1/sqrt(L).

Tevatron Run II Preliminary

Conclusion

- With full dataset and many years hardwork, Tevatron has finally reached SM Higgs sensitivity over most of mass range up to 185 GeV.
 Observed small excess in 115<m_H<135 GeV with global p-value~2.2σ
- •Further improvements are expected and have final results at ICHEP.

BACKUP

Searching for H→bb

Some examples of the final discriminant in three main low-mass channels.Overall agreements between data and bkgd predictions are excellent.

Searching for Z→bb: Validation of Analysis Tools

- •Validating search strategy by looking for WZ and ZZ with similar signatures.
- •Combination of CDF and D0 searches for WZ/ZZ \rightarrow IIbb, Ivbb, and vvbb
- •Measured $\sigma_{_{W7+77}}$ =(1.01+-0.21) x SM, in good agreement with SM

Theoretical Uncertainties

- •Since we combine searches in different Higgs production/decay modes, cross section limits are given with respect to nominal SM predictions.
- •This requires to incorporate latest theoretical predictions and uncertainties for signal cross section and branching ratios.
- •Changes in each iteration to reflect the progresses made in theory and development of MC generators over many years, for example:
 - -the new prescription of PDF by LHC Higgs cross section WG
 - -BNL accord to estimate $H\rightarrow WW$ uncertainties in each jet bin.
 - -the interference between H→WW& WW needs to be included next time.

Combination Methods

- •Two limit setting methods used and provide cross check.
 - Using distributions of final discriminant, not just event yields.
 - Using Poisson statistics for all bins.
 - Systematic as nuisance parameters with truncated Gaussian.
- •Bayesian Method (CDF), integrating over likelihoods:
 - based on credibility, uses a prior
 - "How likely is the real value below limit?"
- •Modified Frequentist Method (DØ), CLs test statistics:
 - comparing 'b-only' & 's+b' hypotheses
 - based on coverage, using pseudo-experiments
 - "How likely is the limit above the real value?"

CDF/D0 Limits

Comparable sensitivity and Consistent results

History of Log Likelihood Ratios

 $\Delta \chi^2$

Cumulative Discriminant at M_H=125 GeV

• Display events from all channels, ordered by S/B for M_{μ} =125 GeV

Cumulative Discriminant

• Sum events from all channels, ordered by S/B for M_{μ} =115 GeV.

Cumulative Discriminant

• Sum events from all channels, ordered by S/B for M_{μ} =165 GeV.

ZH→llbb

•Comparison of ZH \rightarrow IIbb between summer 11 and winter 12.

