THE OTHER HIGGSES, AT RESONANCE, IN THE LEEWICK EXTENSION OF THE STANDARD MODEL
 ARXIV:II08.3765, JHEPIO (20II) I45 (IN COLLABORATION WITH ROMAN ZWICKY)

Dr. Terrance Figy
The University of Manchester
Phenomenology 2012 Symposium
May 8, 2012

OUTLINE

- The Lee-Wick Standard Model
- Higgs boson pair production
- Top quark pair production
- Conclusions

A TOY MODEL

B. Grinstein, D. O'Connel, M.B. Wise (2007)
(A) HD formalism:

$$
\mathcal{L}_{\mathrm{hd}}=\frac{1}{2} \partial_{\mu} \hat{\phi} \partial^{\mu} \hat{\phi}-\frac{1}{2 M^{2}}\left(\partial^{2} \hat{\phi}\right)^{2}-\frac{1}{2} m^{2} \hat{\phi}^{2}-\frac{1}{3!} g \hat{\phi}^{3} .
$$

Propagator: $\hat{D}(p)=i\left(p^{2}-p^{4} / M^{2}-m^{2}\right)^{-1}$

$$
2 \text { poles: } p^{2}=m^{2}, M^{2}
$$

(B) AF formalism: $\hat{\phi}=\phi-\tilde{\phi}$

$$
\begin{aligned}
\mathcal{L} & =\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} \partial_{\mu} \tilde{\phi} \partial^{\mu} \tilde{\phi}+\frac{1}{2} M^{2} \tilde{\phi}^{2}-\frac{1}{2} m^{2}(\phi-\tilde{\phi})^{2}-\frac{1}{3!} g(\phi-\tilde{\phi})^{3} \\
& \text { Wrong sign kinetic and mass term M. }
\end{aligned}
$$

The two formulations are equivalent. Use EoM.

ATOY MODEL

B. Grinstein, D. O’Connel, M.B. Wise (2007)

$$
\begin{aligned}
\phi(p) & =\frac{i}{p^{2}-m^{2}} ; \quad ; \quad \tilde{D}(p)=\frac{-i}{p^{2}-M^{2}} \\
D(0) & =i g \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-m^{2}}-i g \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i}{p^{2}-M^{2}} \\
& =i g \int \frac{d^{4} p}{(2 \pi)^{4}} \frac{i\left(m^{2}-M^{2}\right)}{\left(p^{2}-m^{2}\right)\left(p^{2}-M^{2}\right)}
\end{aligned}
$$

ATOY MODEL

B. Grinstein, D. O'Connel, M.B. Wise (2007)

$$
\begin{aligned}
& D_{\tilde{\phi}}(p)=\frac{-i}{p^{2}-M^{2}}+\frac{-i}{p^{2}-M^{2}}\left(-i \Sigma\left(p^{2}\right)\right) \frac{-i}{p^{2}-M^{2}}+\ldots \\
& =\frac{-i}{p^{2}-M^{2}+\Sigma\left(p^{2}\right)}
\end{aligned}
$$

$$
D_{\tilde{\phi}}(p)=\frac{-i}{p^{2}-M^{2}-i M \Gamma}, \quad \Gamma=\frac{g^{2}}{32 \pi M} \sqrt{1-\frac{4 m^{2}}{M^{2}}} .
$$

A LW resonance has a probability $\Gamma d t$ of decaying in the interval $-d t$.

Is this a problem? Shall we debate this issue further or proceed?

LWSM

Higgs Sector (AF formalism)

$$
\begin{gathered}
\mathcal{L}=\left(\hat{D}_{\mu} H\right)^{\dagger}\left(\hat{D}^{\mu} H\right)-\left(\hat{D}_{\mu} \tilde{H}\right)^{\dagger}\left(\hat{D}^{\mu} \tilde{H}\right)+M_{H}^{2} \tilde{H}^{\dagger} \tilde{H}-V(H-\tilde{H}) \\
\hat{D}_{\mu}=\partial_{\mu}+i\left(\mathbf{A}_{\mu}+\tilde{\mathbf{A}}_{\mu}\right) \quad \mathbf{A}_{\mu}=g A_{\mu}^{a} T^{a}+g_{2} W_{\mu}^{a} T^{a}+g_{1} B_{\mu} Y \\
H^{\top}=\left[0,\left(v+h_{0}\right) / \sqrt{2}\right], \quad \tilde{H}^{\top}=\left[\tilde{h}_{+},\left(\tilde{h}_{0}+i \tilde{p}_{0}\right) / \sqrt{2}\right] \\
\left\langle h_{0}\right\rangle=v, \quad\left\langle\tilde{h}_{0}\right\rangle=0 \\
\mathcal{L}_{\text {mass }}=-\frac{\lambda}{4} v^{2}\left(h_{0}-\tilde{h}_{0}\right)^{2}+\frac{M_{H}^{2}}{2}\left(\tilde{h}_{0} \tilde{h}_{0}+\tilde{p}_{0} \tilde{p}_{0}+2 \tilde{h}_{+} \tilde{h}_{-}\right)
\end{gathered}
$$

LWSM

Higgs Sector

Symplectic rotation: $\quad\binom{h}{\tilde{h}}=\left(\begin{array}{ll}\cosh \phi_{h} & \sinh \phi_{h} \\ \sinh \phi_{h} & \cosh \phi_{h}\end{array}\right)\binom{h_{\text {phys }}}{\tilde{h}_{\text {phys }}}$
Mass eigenvalues:

	h_{0}	\tilde{h}_{0}	\tilde{p}_{0}	$h_{ \pm}$
CP	even	even	odd	none
$\frac{m_{\text {phys }}^{2}}{M_{H}^{2}}$	$\frac{1}{2}\left(1-\sqrt{1-2 v^{2} \lambda / M_{H}^{2}}\right)$	$\frac{1}{2}\left(1+\sqrt{1-2 v^{2} \lambda / M_{H}^{2}}\right)$	1	1

LWSM

Higgs Sector

Mixing angle:

$$
\begin{gathered}
\lambda v^{2}=\frac{2 m_{h_{0}, \text { phys }}^{2}}{\left(1+r_{h_{0}}^{2}\right)}, \quad r_{h_{0}} \equiv \frac{m_{h_{0}, \mathrm{phys}}}{m_{\tilde{h}_{0}, \text { phys }}}, \\
s_{H}=\cosh \phi_{h}=\frac{1}{\left(1-r_{h_{0}}^{4}\right)^{1 / 2}}, \\
s_{H-\tilde{H}}=\cosh \phi_{h}-\sinh \phi_{h}=\frac{1+r_{h_{0}}^{2}}{\left(1-r_{h_{0}}^{4}\right)^{1 / 2}}
\end{gathered}
$$

LWSM

Yukawa Interactions (in auxiliary field formalism)

$$
\begin{gathered}
\mathcal{L}=\overline{\Psi^{t}} i \eta_{3} \hat{D} \Psi^{t}-\overline{\Psi_{R}^{t}} \mathcal{M}_{t} \eta_{3} \Psi_{L}^{t}-\overline{\Psi_{L}^{t}} \eta_{3} \mathcal{M}^{\dagger} \Psi_{R}^{t} \\
\Psi_{L}^{t \top}=\left(T_{L}, \tilde{t}_{L}^{\prime}, \tilde{T}_{L}\right), \quad \Psi_{R}^{t \top}=\left(t_{R}, \tilde{t}_{R}, \tilde{T}_{R}^{\prime}\right)
\end{gathered}
$$

SU(2) doublet: $\quad Q_{L}=\left(T_{L}, B_{L}\right)^{\top}$

$$
\mathcal{M}_{t} \eta_{3}=\left(\begin{array}{ccc}
m_{t} & 0 & -m_{t} \\
-m_{t} & -M_{u} & m_{t} \\
0 & 0 & -M_{Q}
\end{array}\right), \quad \eta_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

LWSM

Diagonalization of mass matrices

$$
\begin{gathered}
\Psi_{L(R), \text { phys }}=\eta_{3} S_{L(R)}^{\dagger} \eta_{3} \Psi_{L(R)}, \quad \mathcal{M}_{t, \text { phys }} \eta_{3}=S_{R}^{\dagger} \mathcal{M}_{t} \eta_{3} S_{L}, \\
S_{L} \eta_{3} S_{L}^{\dagger}=\eta_{3} \quad \text { and } \quad S_{R} \eta_{3} S_{R}^{\dagger}=\eta_{3}
\end{gathered}
$$

Higgs-quark vertices

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{v}\left(h_{0}-\tilde{h}_{0}\right)\left(\overline{\Psi_{R}^{t}} g_{t} \Psi_{L}^{t}+\overline{\Psi_{L}^{t}} g_{t}^{\dagger} \Psi_{R}^{t}\right)-\frac{1}{v}\left(-i \tilde{p}_{0}\right)\left(\overline{\Psi_{R}^{t}} g_{t} \Psi_{L}^{t}-\overline{\Psi_{L}^{t}} g_{t}^{\dagger} \Psi_{R}^{t}\right) \\
g_{t}=\left(\begin{array}{ccc}
m_{t} & 0 & -m_{t} \\
-m_{t} & 0 & m_{t} \\
0 & 0 & 0
\end{array}\right), \quad g_{t, \text { phys }}=S_{R}^{\dagger} g_{t} S_{L}
\end{gathered}
$$

LWSM

LW gauge bosons are massive and mix:

$$
\begin{aligned}
\mathcal{L}_{2 g}= & -\frac{1}{2} \operatorname{Tr}\left(B_{\mu \nu} B^{\mu \nu}-\tilde{B}_{\mu \nu} \tilde{B}^{\mu \nu}+W_{\mu \nu} W^{\mu \nu}-\tilde{W}_{\mu \nu} \tilde{W}^{\mu \nu}\right) \\
& -\frac{1}{2}\left(M_{1}^{2} \tilde{B}_{\mu} \tilde{B}^{\mu}+M_{2}^{2} \tilde{W}_{\mu}^{a} \tilde{W}_{a}^{\mu}\right)+\frac{g_{2}^{2} v^{2}}{8}\left(W_{\mu}^{1,2}+\tilde{W}_{\mu}^{1,2}\right)^{2} \\
& +\frac{v^{2}}{8}\left(g_{1} B_{\mu}+g_{1} \tilde{B}_{\mu}+g_{2} W_{\mu}^{3}+g_{2} \tilde{W}_{\mu}^{3}\right)^{2}
\end{aligned}
$$

Gauge interactions:

$$
\begin{aligned}
\mathcal{L}_{i n t}= & -\sum_{\psi=q_{L}, u_{R}, d_{R}}\left[g_{1} \bar{\psi}(\not B+\ddot{B}) \psi+g_{2} \bar{\psi}(W+\tilde{W}) \psi\right] \\
& +\sum_{\psi=q, u, d}\left[g_{1} \overline{\tilde{\psi}}(\not B+\ddot{B}) \tilde{\psi}+g_{2} \overline{\tilde{\psi}}(W+\tilde{W}) \tilde{\psi}\right]
\end{aligned}
$$

LWSM

Couplings to gauges bosons and fermions

E. Alvarez, E. Coluccio, J.Zurita: arXiv 1004.3496

$$
g_{h_{0} f \bar{f}}=-g_{\tilde{h}_{0} f \bar{f}}=\cosh \theta-\sinh \theta=\frac{1+r^{2}}{\sqrt{1-r^{4}}}, \quad g_{\tilde{P} f \bar{f}}=-1 \quad g_{\tilde{P} g g}^{2}=\frac{\sigma(g g \rightarrow \tilde{P})}{\sigma^{S M}(g g \rightarrow H)}=\left|\frac{g_{\tilde{P} t \tilde{t}} F_{1 / 2}^{\tilde{P}}\left(\beta_{\tilde{P}}^{t}\right)}{F_{1 / 2}\left(\beta_{\tilde{P}}^{t}\right)}\right|^{2}
$$

LWSM: SUMMARY

- For each SM field add a higher derivative (HD) term.
- Auxiliary fields (AF) can be introduced to cast the theory in terms of interactions with mass dimension no greater than 4.
-The AFs are interpreted as LW partner states and have the wrong-sign propagator (aka Pauli-Villars regulators).
-The LWSM solves the hierarchy problem: the extra minus sign in the loop diagrams come from the LW field propagators. No need for opposite spin statistics!
- Unitarity is preserved, provided that the LW fields do no appear as asymptotic states in the S-matrix.
- Causality is preserved at the the macroscopic level (where we live). However, there can be violations of causality at the microscopic level.

HIGGS BOSON PAIR PRODUCTION

$$
p p \rightarrow h_{0} h_{0}
$$

(a)
(b)

$$
\mathcal{M}\left(g g \rightarrow h_{0} h_{0}\right)=\frac{1}{32 \pi^{2}} \delta^{a b} \frac{g^{2}}{v^{2}}\left(\mathcal{A}_{0} P_{0}+\mathcal{A}_{2} P_{2}\right)_{\mu \nu} e\left(p_{1}\right)_{a}^{\mu} e\left(p_{2}\right)_{b}^{\nu}
$$

For details see our Appendix!

HIGGS BOSON PAIR PRODUCTION

Total cross section

HIGGS BOSON PAIR PRODUCTION

Total cross section

HIGGS BOSON PAIR PRODUCTION

HIGGS BOSON PAIR PRODUCTION

$$
p p \rightarrow h_{0} h_{0} \rightarrow b \bar{b} \gamma \gamma
$$

HIGGS BOSON PAIR PRODUCTION

$$
p p \rightarrow h_{0} h_{0} \rightarrow b \bar{b} \gamma \gamma
$$

- Cut I: Two isolated photons.
- Cut 2: Two kt jets.
- Cut 3: At least one b-tagged jet.
- Cut 4: $\left|M_{\gamma \gamma}-m_{h_{0}}\right| \leq 2 \mathrm{GeV}$
- Cut 5: $\left|M_{b j}-m_{h_{0}}\right| \leq 20 \mathrm{GeV}$
- Cut 6: $\left|M_{b j \gamma \gamma}-m_{\tilde{h}_{0}}\right| \leq \delta m_{\tilde{h}_{0}}$

HIGGS BOSON PAIR PRODUCTION

HIGGS BOSON PAIR PRODUCTION

Benchmark	$m_{h_{0}}(\mathrm{GeV})$	$m_{\tilde{h}_{0}}(\mathrm{GeV})$	$\delta m_{\tilde{h}_{0}}(\mathrm{GeV})$
(a)	120	300	40
(b)	130	445	45
(c)	130	550	50

$$
p p \rightarrow h_{0} h_{0} \rightarrow b \bar{b} \gamma \gamma
$$

	QCD+EW:	$\gamma \gamma j j$	$\gamma \gamma b b$	$\gamma \gamma c c$	$\gamma \gamma b c$	$\gamma \gamma b j$	$\gamma \gamma c j$
	$\sigma_{\text {gen }}(\mathrm{pb})$	23.2	0.176	1.56	0.0840	0.519	6.26
	cut 1	0.390	0.370	0.306	0.295	0.344	0.354
	cut 2	0.363	0.358	0.386	0.435	0.406	0.366
	cut 3	0.0526	0.795	0.116	0.516	0.460	0.0920
	cut 4a	0.0212	0.0233	0.0247	0.0217	0.0240	0.0200
	cut 5a	0.249	0.229	0.232	0.242	0.264	0.203
	cut 6a	0.604	0.547	0.713	0.534	0.471	0.627
	$\epsilon_{\text {tot }}$	2.37×10^{-5}	3.07×10^{-4}	5.60×10^{-5}	1.85×10^{-4}	1.93×10^{-4}	3.03×10^{-5}
(a)	$\sigma_{\text {eff }}(\mathrm{fb})$	0.550	0.0527	0.0873	0.0156	0.100	0.190
	cut 4b	0.0150	0.0202	0.0139	0.0167	0.0221	0.0191
	cut 5b	0.221	0.213	0.174	0.242	0.234	0.276
	cut 6b	0.136	0.0567	0.129	0.138	0.165	0.130
	$\epsilon_{\text {tot }}$	3.37×10^{-6}	2.56×10^{-5}	6.14×10^{-6}	3.67×10^{-5}	5.46×10^{-5}	8.06×10^{-6}
$(\mathrm{~b})$	$\sigma_{\text {eff }}(\mathrm{fb})$	0.0782	0.00431	0.00959	0.00309	0.0283	0.0505
	cut 4c	0.0150	0.0213	0.0199	0.0167	0.0221	0.0191
	cut 5 c	0.221	0.213	0.174	0.242	0.234	0.274
	cut 6 c	0.00723	0.0337	0.00289	0.0164	0.0303.	0.0 .0122
	$\epsilon_{\text {tot }}$	1.79×10^{-7}	1.52×10^{-5}	1.38×10^{-8}	4.36×10^{-6}	1.00×10^{-5}	7.58×10^{-7}
(c)	$\sigma_{\text {eff }}(\mathrm{fb})$	0.00414	0.00261	2.15×10^{-5}	0.000366	0.00521	0.00475

HIGGS BOSON PAIR PRODUCTION

Benchmark	$m_{h_{0}}(\mathrm{GeV})$	$m_{\tilde{h}_{0}}(\mathrm{GeV})$	$\delta m_{\tilde{h}_{0}}(\mathrm{GeV})$
(a)	120	300	40
(b)	130	445	45
(c)	130	550	50

$$
p p \rightarrow h_{0} h_{0} \rightarrow b \bar{b} \gamma \gamma
$$

$p p \rightarrow h_{0} Z \rightarrow \gamma \gamma b \bar{b}$	(a) $m_{h_{0}}=120 \mathrm{GeV}, m_{\tilde{h}_{0}}=300 \mathrm{GeV}$
$\sigma_{\text {gen }}(\mathrm{fb})$	32.3
cut 1	0.745
cut 2	0.489
cut 3	0.772
cut 4	0.999
cut 5	0.184
cut 6	0.422
$\epsilon_{\text {tot }}$	0.0218
$\sigma_{\text {eff }}(\mathrm{fb})$	0.703

$p p \rightarrow h_{0} h_{0} \rightarrow \gamma \gamma b \bar{b}$	(a)	(b)	(c)
$\sigma_{\text {gen }}(\mathrm{fb})$	11.2	0.964	0.195
cut 1	0.594	0.675	0.693
cut 2	0.414	0.405	0.391
cut 3	0.734	0.760	0.748
cut 4	0.999	0.999	0.999
cut 5	0.601	0.567	0.586
cut 6	0.966	0.823	0.725
$\epsilon_{\text {tot }}$	0.105	0.097	0.0861
$\sigma_{\text {eff }}(\mathrm{fb})$	1.18	0.0935	0.0168

HIGGS BOSON PAIR PRODUCTION

Benchmark	$m_{h_{0}}(\mathrm{GeV})$	$m_{\tilde{h}_{0}}(\mathrm{GeV})$	$\delta m_{\tilde{h}_{0}}(\mathrm{GeV})$
(a)	120	300	40
(b)	130	445	45
(c)	130	550	50

$$
p p \rightarrow h_{0} h_{0} \rightarrow b \bar{b} \gamma \gamma
$$

INTERFERENCE EFFECTS INTOP PAIR PRODUCTION

$$
\begin{aligned}
g g \rightarrow R \rightarrow \bar{t} t & \quad \text { D.Dicus, A. Strange, and s.Willenbrock } \\
\left.\frac{d \hat{\sigma}}{d s}(g g \rightarrow \bar{t} t)\right|_{\text {interference }} & =-|c(s)| \operatorname{Re}\left[\frac{l_{\Delta}}{s-m_{R}^{2}+i m_{R} \Gamma_{R}}\right] \\
& =-|\tilde{c}(s)|\left(\left(s-m_{R}^{2}\right) \operatorname{Re}\left[l_{\Delta}\right]+m_{R} \Gamma_{R} \operatorname{Im}\left[l_{\Delta}\right]\right)
\end{aligned}
$$

$$
l_{\Delta}=l_{\Delta}\left(s / 4 m_{t}^{2}\right) \quad \text { loop triangle function }
$$

I. If there is no loop function there will be a peak-dip. 2. For a scalar or pseudo-scalar resonance this pattern does not change.

INTERFERENCE EFFECTS INTOP PAIR PRODUCTION

$$
g g \rightarrow R \rightarrow \bar{t} t
$$

$$
\left.\frac{d \hat{\sigma}}{d s}(g g \rightarrow \bar{t} t)\right|_{\mathrm{LW}-\text { interference }}=-|c(s)| \operatorname{Re}\left[\frac{-l_{\triangle}\left(s / 4 m_{t}^{2}\right)}{\left(s-m_{R}^{2}\right)-i m_{R} \Gamma_{R}}\right]
$$

$$
=-|\tilde{c}(s)|\left(-\left(s-m_{R}^{2}\right) \operatorname{Re}\left[l_{\Delta}\right]+m_{R} \Gamma_{R} \operatorname{Im}\left[l_{\Delta}\right]\right)
$$

Sign-flip in the LW -
case

$$
\mathcal{M}_{R}^{2}=m_{R}^{2}+\frac{\operatorname{Im}\left[l_{\Delta}\right]}{\operatorname{Re}\left[l_{\Delta}\right]} m_{R} \Gamma_{R}
$$

Dip-peak structure

INTERFERENCE EFFECTS INTOP PAIR PRODUCTION

Usual resonance

Lee-Wick type resonance

Top pair invariant mass spectrum

LO, MSTW2008 LO(90\% C.L.), $\sqrt{S}=14 \mathrm{TeV}, \mu_{f}=\mu_{r}=m_{t}$

CONCLUSIONS

- LW Gauge bosons and LW fermions are constrained to be in the few TeV range by EWPO and dilepton searches while the LW Higgs could be below a TeV.
- We have computed the total cross section for double Higgs boson pair production.
- Additionally, we have investigated a search at the a 14 TeV LHC using the di-photon plus di-jet channel. For LW Higgs boson masses of 300 GeV a 5 sigma discovery can be made with 20 I/fb of integrated luminosity.
- We have investigated top pair production in the LWSM. For LW Higgs boson masses above the top pair production threshold, the branching fraction of the LW Higgs boson decaying top pairs dominates. Hence, the top pair channel dominates over the double Higgs boson channel.

Higgs boson decays

Higgs to two photons

Figure 4: The relative change in the cross-section times decay rate for the full process $g g \rightarrow$ $h_{0} \rightarrow \gamma \gamma$ in the LWSM, expressed as $\left|\kappa_{g g}\right|^{2}\left|\kappa_{\gamma \gamma}\right|^{2}-1$, plotted as a function of $m_{h_{0}, \text { phys }}$. Lee-Wick mass scales are such that $M_{Q}=M_{u}=m_{\tilde{h}, \text { phys }}=m_{\tilde{h}+, \text { phys }}=m_{\tilde{W}, \text { phys }} \equiv \tilde{M}$
F.Krauss, T.E.J Underwood, R. Zwicky: arXiv 0709.4054

References

- The Lee-Wick standard model - Grinstein, Benjamin et al. Phys.Rev. D77 (2008) 025012 . arXiv:0704.1845 [hep-ph] . CALT-68-2643, UCSD-PTH-07-04
- Negative Metric and the Unitarity of the S Matrix - Lee, T.D. et al. Nucl.Phys. B9 (1969) 209-243
- Finite Theory of Quantum Electrodynamics - Lee, T.D. et al. Phys.Rev. D2 (1970) 1033-1048
- Causality as an emergent macroscopic phenomenon: The Lee-Wick O(N) model - Grinstein, Benjamin et al. Phys.Rev. D79 (2009) 105019 . arXiv:0805.2156 [hepth] . CALT-68-2684, UCSD-PTH-08-03
5 - A non-analytic S matrix - Cutkosky, R.E. et al. Nucl.Phys. B12 (1969) 281-300
6 - Vertex Displacements for Acausal Particles: Testing the Lee-Wick Standard Model at the LHC - Alvarez, Ezequiel et al. JHEP 0910 (2009) 023 . arXiv:0908.2446 [hep-ph] . UDEM-GPP-TH-09-183, IFIBA-TH-09-001
- Lee-wick Indefinite Metric Quantization: A Functional Integral Approach - Boulware, David G. et al. Nucl.Phys. B233 (1984) 1. DOE/ER/40048-12 P3

8 - Non-perturbative quantization of phantom and ghost theories: Relating definite and indefinite representations - van Tonder, Andre Int.J.Mod.Phys. A22 (2007) 2563-2608 . hep-th/0610185

- Unitarity, Lorentz invariance and causality in Lee-Wick theories: An Asymptotically safe completion of QED - van Tonder, Andre . arXiv:0810.1928 [hep-th]

10 - Lee-Wick Theories at High Temperature - Fornal, Bartosz et al. Phys.Lett. B674 (2009) 330-335 . arXiv:0902.1585 [hep-th] . CALT-68-2720, UCSD-PTH-09-02
11 - Massive vector scattering in Lee-Wick gauge theory - Grinstein, Benjamin et al. Phys.Rev. D77 (2008) 065010 . arXiv:0710.5528 [hep-ph] . CALT-68-2662, UCSD-PTH-07-10
12 - Neutrino masses in the Lee-Wick standard model - Espinosa, Jose Ramon et al. Phys.Rev. D77 (2008) 085002 . arXiv:0705.1188 [hep-ph] . CALT-68-2647, IFT-UAM-CSIC-07-21, UCSD-PTH-07-05
13 - One-Loop Renormalization of Lee-Wick Gauge Theory - Grinstein, Benjamin et al. Phys.Rev. D78 (2008) 105005 . arXiv:0801.4034 [hep-ph] . UCSD-PTH-07-11
14 - Ultraviolet Properties of the Higgs Sector in the Lee-Wick Standard Model - Espinosa, Jose R. et al. Phys.Rev. D83 (2011) 075019 . arXiv:1101.5538 [hep-ph]
15 - A Higher-Derivative Lee-Wick Standard Model - Carone, Christopher D. et al. JHEP 0901 (2009) 043 . arXiv:0811.4150 [hep-ph]
16 - Higher-Derivative Lee-Wick Unification - Carone, Christopher D. Phys.Lett. B677 (2009) 306-310 . arXiv:0904.2359 [hep-ph]
17 - No Lee-Wick Fields out of Gravity - Rodigast, Andreas et al. Phys.Rev. D79 (2009) 125017 . arXiv:0903.3851 [hep-ph] . HU-EP-09-13
18 - A Nonsingular Cosmology with a Scale-Invariant Spectrum of Cosmological Perturbations from Lee-Wick Theory - Cai, Yi-Fu et al. Phys.Rev. D80 (2009) 023511 . arXiv:0810.4677 [hep-th]
19 - Searching for Lee-Wick gauge bosons at the LHC - Rizzo, Thomas G. JHEP 0706 (2007) 070 . arXiv:0704.3458 [hep-ph] . SLAC-PUB-12481
20 - Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders - Rizzo, Thomas G. JHEP 0801 (2008) 042 . arXiv:0712.1791 [hep-ph] . SLAC-PUB-13039
21 - Flavor Changing Neutral Currents in the Lee-Wick Standard Model - Dulaney, Timothy R. et al. Phys.Lett. B658 (2008) 230-235 . arXiv:0708.0567 [hep-ph] . CALT-68-2656
22 - Electroweak Precision Data and the Lee-Wick Standard Model - Underwood, Thomas E.J. et al. Phys.Rev. D79 (2009) 035016 . arXiv:0805. 3296 [hep-ph] IPPP-08-21, DCPT-08-42
23 - Custodial Isospin Violation in the Lee-Wick Standard Model - Chivukula, R.Sekhar et al. Phys.Rev. D81 (2010) 095015 . arXiv:1002.0343 [hep-ph] . MSUHEP-100201
24 - The Process gg ---> h(0) ---> gamma gamma in the Lee-Wick standard model - Krauss, F. et al. Phys.Rev. D77 (2008) 015012 . arXiv:0709. 4054 [hep-ph] . IPPP-07-49, DCPT-07-98
25 - Constraints on the Lee-Wick Higgs Sector - Carone, Christopher D. et al. Phys.Rev. D80 (2009) 055020 . arXiv:0908. 0342 [hep-ph]
26 - Higgs ---> Gamma Gamma beyond the Standard Model - Cacciapaglia, Giacomo et al. JHEP 0906 (2009) 054 . arXiv:0901.0927 [hep-ph] . LYCEN-2008-13
27 - Collider Bounds on Lee-Wick Higgs Bosons - Alvarez, Ezequiel et al. Phys.Rev. D83 (2011) 115024 . arXiv:1104.3496 [hep-ph] . ZU-TH-06-11

