Direct CP-violation in charmed meson

decays

Alexey A. Petrov
Wayne State University
Michigan Center for Theoretical Physics

Table of Contents:

- Introduction
- CP-violation in charmed mesons
- Direct CP-violation
- LHCb/CDF analyses
- Conclusions and outlook

Nonleptonic charm quark decay

\star Can be classified by SM CKM suppression
\star Cabibbo-favored (CF) decay

Direct CP-violation (charged D's)

* At least two components of the transition amplitude are required

$$
\text { Look at charged D's (SCS): } \quad A\left(D^{+} \rightarrow f\right) \equiv A_{f}=\left|A_{1}\right| e^{i \delta_{1}} e^{i \phi_{1}}+\left|A_{2}\right| e^{i \delta_{2}} e^{i \phi_{2}}
$$

Then, a charge asymmetry will provide a CP-violating observable

$$
a_{f}=\frac{\Gamma\left(D^{+} \rightarrow f\right)-\Gamma\left(D^{-} \rightarrow \bar{f}\right)}{\Gamma\left(D^{+} \rightarrow f\right)+\Gamma\left(D^{-} \rightarrow \bar{f}\right)}=\frac{2 \operatorname{Im} A_{1} A_{2}^{*} \sin \left(\delta_{1}-\delta_{2}\right)}{\left|A_{1}\right|^{2}+\left|A_{2}\right|^{2}+2 \operatorname{Re} A_{1} A_{2}^{*} \cos \left(\delta_{1}-\delta_{2}\right)}
$$

...or, introducing $r_{f}=\left|A_{2} / A_{1}\right|: \quad a_{f}=2 r_{f} \sin \phi \sin \delta$ details of hadronic model ($\delta=\delta_{1}-\delta_{2}$)
\star Same formalism applies if one of the amplitudes is generated by New Physics - need $r_{f} \sim 1 \%$ for $O(1 \%)$ charge asymmetry assuming that $\sin \delta \sim 1$ - need to efficiently detect neutrals (not good for LHCb)

A comment

* Generic expectation is that CP-violating observables in the SM are small
$\Delta c=1$ amplitudes

Penguin amplitude

* The Unitarity Triangle for charm:

$$
\begin{aligned}
& V_{u d} V_{c d}^{*}+V_{u s} V_{c s}^{*}+V_{u b} V_{c b}^{*}=0 \\
& \sim \lambda \quad \sim \lambda \quad \lambda^{5}
\end{aligned}
$$

$\Delta c=2$ amplitudes

D- $\overline{\mathrm{D}}$ mixing

With b-quark contribution neglected: only 2 generations contribute \Rightarrow real 2×2 Cabibbo matrix

Any CP-violating signal in the $S M$ will be small, at most $O\left(V_{u b} V_{c b}{ }^{*} / V_{u s} V_{c s}{ }^{*}\right) \sim 10^{-3}$ Thus, O(1\%) CP-violating signal can provide a "smoking gun" signature of New Physics

Direct CP-violation (neutral D's)

* Consider partial decay rate asymmetries for neutral decays

$$
a_{f}=\frac{\Gamma(D \rightarrow f)-\Gamma(\bar{D} \rightarrow \bar{f})}{\Gamma(D \rightarrow f)+\Gamma(\bar{D} \rightarrow \bar{f})} \quad \text { and } \quad a_{\bar{f}}=\frac{\Gamma(D \rightarrow \bar{f})-\Gamma(\bar{D} \rightarrow f)}{\Gamma(D \rightarrow \bar{f})+\Gamma(\bar{D} \rightarrow f)}
$$

* Each of those asymmetries can be expanded as

Those observables are of the first order in CPV parameters

- need to separate $a_{c p}$ in mixing from direct $a_{c p}$

LHCb/CDF analyses: idea

\star IDEA: consider the DIFFERENCE of decay rate asymmetries: $D \rightarrow \pi \pi$ vs $D \rightarrow K K$ D^{0} : no neutrals in

$$
a_{f}=a_{f}^{d}+a_{f}^{m}+a_{f}^{i}
$$ the final state!

\star A reason: $a^{m}{ }_{K K}=a^{m}{ }_{\pi \pi}$ and $a^{i}{ }_{K K}=a^{i}{ }_{\pi \pi}$, so, ideally, mixing asymmetries cancel...

$$
a_{f}^{d}=2 r_{f} \sin \phi_{f} \sin \delta_{f}
$$

$\star \ldots$ and the resulting DCPV asymmetry is $\Delta a_{C P}=a_{K K}^{d}-a_{\pi \pi}^{d} \approx 2 a_{K K}^{d}$

$$
\begin{aligned}
& A_{K K}=\frac{G_{F}}{\sqrt{2}} \lambda\left[\left(T+E+P_{s d}\right)+a \lambda^{4} e^{-i \gamma} P_{b d}\right] \\
& A_{\pi \pi}=\frac{G_{F}}{\sqrt{2}} \lambda\left[\left(-(T+E)+P_{s d}\right)+a \lambda^{4} e^{-i \gamma} P_{b d}\right]
\end{aligned}
$$

\star... so it is doubled in the limit of $S U(3)_{\text {F }}$ symmetry
$\mathrm{SU}(3)$ is badly broken in D-decays

LHCb/CDF analyses: theory

\star Since we are comparing D^{0} and anti- D^{0} : need to tag the flavor at production

$$
D^{*+} \rightarrow D^{0} \pi_{s}^{+} \quad \text { " } D^{*} \text {-trick" -- tag the charge of the slow pion }
$$

* The difference $\Delta a_{c p}$ is also preferable experimentally, as

* D* production asymmetry and soft pion asymmetries are the same for KK and $\pi \pi$ final states-- they cancel in $\Delta a_{c p}$!
* Also: no D^{0} detection asymmetry for $K K$ and $\pi \pi$ final states
"Theoretically," the difference is robust against systematic errors
LHCb needs to check that!
CDF did a careful analysis?

LHCb/CDF analyses: experiment

* Let's expand time-dependent decay rates in (x, y) and form CP-asymmetry

$$
\begin{gathered}
a_{C P}(f ; t) \approx a_{f}^{d}+\frac{t}{\tau} a_{f}^{i n d} \quad \text { where } \\
a_{f}^{d}=a_{C P}(f ; t=0)=\frac{\Gamma\left(D^{0} \rightarrow f^{+} f^{-}\right)-\Gamma\left(\bar{D}^{0} \rightarrow f^{+} f^{-}\right)}{\Gamma\left(D^{0} \rightarrow f^{+} f^{-}\right)+\Gamma\left(\bar{D}^{0} \rightarrow f^{+} f^{-}\right)} \\
a_{f}^{i n d}=\frac{1}{2}\left[y\left(\left|\frac{q}{p}\right|-\left|\frac{p}{q}\right|\right) \cos \phi-x\left(\left|\frac{q}{p}\right|+\left|\frac{p}{q}\right|\right) \sin \phi\right]
\end{gathered}
$$

\star Now, if we integrate over time,

$$
a_{C P, f}=\int_{0}^{\infty} a_{C P}(f ; t) D(t) d t=a_{f}^{d}+\frac{\langle t\rangle}{\tau} a_{f}^{i n d}
$$

Not quite "clean" direct CP-violating asymmetry, but close

LHCb/CDF analyses: experiment

\star Now form the difference of CP-asymmetries: $\Delta a_{C P}=a_{C P, K K}-a_{C P, \pi \pi}$ \star...estimate the indirect CPV contribution... $\frac{\Delta\langle t\rangle}{\tau}=\frac{\left\langle t_{K K}\right\rangle}{\tau}-\frac{\left\langle t_{\pi \pi}\right\rangle}{\tau}=(9.8 \pm 0.9) \%$

$$
\begin{aligned}
& \star \ldots \text { and report the results: } \\
& \text { LHCb: } \Delta a_{C P}=(-0.82 \pm 0.21(\text { stat }) \pm 0.11(\text { sys })) \% \\
& \text { CDF : } \Delta a_{C P}=(-0.46 \pm 0.31(\text { stat }) \pm 0.12(\text { sys })) \% \\
& \text { Belle: } \Delta a_{C P}=(-0.86 \pm 0.62(\text { comb; mine })) \% \\
& \star \text { along with a "new" result: } \\
& \quad \quad 2.7 \text { sigma away from No CP! } \\
& \Delta A_{C P}=(-0.62 \pm 0.21(\text { stat }) \pm 0.10(\text { sys })) \%
\end{aligned}
$$

It looks like CP is broken in charm transitions! Now what?

Is it Standard Model or New Physics??

* Honestly, we don't yet know...
\star one can fit the data (no prediction) to get constraints on P...
Bhattacharya, Gronau, Rosner; Isidori, Kamenik, Ligeti, Perez; Brod, Kagan, Zupan ...
* ...or one can attempt a combined approach: QCD factorization plus global fit

Khodjamirian, A.A.P.

* Let's consider CF, SCS and DCS amplitudes together

$$
\begin{aligned}
\mathcal{H}_{C F} & =\frac{G_{F}}{\sqrt{2}} V_{u d} V_{c s}^{*}\left[C_{1}(\mu) \mathcal{O}_{1}+C_{2}(\mu) \mathcal{O}_{2}\right]+\text { h.c }, \\
\mathcal{O}_{1} & =\left(\bar{s}_{i} \Gamma_{\mu} c_{i}\right)\left(\bar{u}_{k} \Gamma^{\mu} d_{k}\right), \quad \widetilde{\mathcal{O}}_{1}=\left(\bar{s} \Gamma_{\mu} \frac{\lambda^{a}}{2} c\right)\left(\bar{u} \Gamma^{\mu} \frac{\lambda^{a}}{2} d\right), \\
\mathcal{O}_{2} & =\left(\bar{s}_{i} \Gamma_{\mu} c_{k}\right)\left(\bar{u}_{k} \Gamma^{\mu} d_{i}\right), \quad \widetilde{\mathcal{O}}_{2}=\left(\bar{s} \Gamma_{\mu} \frac{\lambda^{a}}{2} d\right)\left(\bar{u} \Gamma^{\mu} \frac{\lambda^{a}}{2} c\right) . \\
\mathcal{H}_{C S} & =\frac{G_{F}}{\sqrt{2}} \sum_{q=s, d} V_{u q} V_{c q}^{*}\left[C_{1}(\mu) \mathcal{O}_{1}^{q}+C_{2}(\mu) \mathcal{O}_{2}^{q}\right] \\
& -\frac{G_{F}}{\sqrt{2}} V_{u b} V_{c b}^{*} \sum_{n=3}^{6} C_{n}(\mu) \mathcal{O}+\text { h.c }, \\
\mathcal{O}_{1} & =\left(\bar{q}_{i} \Gamma_{\mu} c_{i}\right)\left(\bar{u}_{k} \Gamma^{\mu} q_{k}\right), \\
\mathcal{O}_{2} & =\left(\bar{q}_{i} \Gamma_{\mu} c_{k}\right)\left(\bar{u}_{k} \Gamma^{\mu} q_{i}\right),
\end{aligned}
$$

Theoretical framework

* Factorizing decay amplitudes, e.g.

$$
\begin{aligned}
\left\langle P_{1}, P_{2}\right| H_{w}|D\rangle= & \left(C_{1}+\frac{C_{2}}{3}\right)\left\langle P_{1}\right| \bar{q}_{1} \Gamma_{\mu} q_{2}|0\rangle\left\langle P_{2}\right| \bar{q}_{3} \Gamma^{\mu} c|D\rangle \\
& +2 C_{2}\left\langle P_{1}, P_{2}\right| \bar{q}_{1} \Gamma_{\mu} \frac{\lambda^{a}}{2} q_{2} \bar{q}_{3} \Gamma^{\mu} \frac{\lambda^{a}}{2} c|D\rangle
\end{aligned}
$$

* If you are lucky: B-physics (QCD factorization)

$$
\begin{aligned}
& \left\langle\pi\left(p^{\prime}\right) \pi(q)\right| Q_{i}|\bar{B}(p)\rangle=f^{B \rightarrow \pi}\left(q^{2}\right) \int_{0}^{1} d x T_{i}^{I}(x) \Phi_{\pi}(x) \\
& \quad+\int_{0}^{1} d \xi d x d y T_{i}^{I I}(\xi, x, y) \Phi_{B}(\xi) \Phi_{\pi}(x) \Phi_{\pi}(y), \quad \text { perturbative! }
\end{aligned}
$$

* Gluon exchanges with spectators are not perturbative in D-decays
- calculate tree/color suppressed factorizable amplitudes
- treat remaining non-factorizable amplitudes as parameters and fit

$$
r e^{i \delta_{r}}=\frac{\left\langle P_{1} P_{2}\right| \widetilde{O}_{1,2}|D\rangle}{\left\langle P_{1} P_{2}\right| O_{1,2}|D\rangle}
$$

Combined fit: CF/DCS amplitudes

\star CF amplitudes: $\quad A\left(D^{+} \rightarrow \bar{K}^{0} \pi^{+}\right)=\frac{G_{F}}{\sqrt{2}} V_{c s} V_{u d}^{*}\left[t_{\pi K}^{\text {fact }}\left(a_{1}+2 C_{2} r e^{i \delta_{r}}\right)\right.$

$$
\left.+t_{K \pi}^{\text {fact }}\left(a_{2}+2 C_{1} r e^{i \delta_{r}}\right)\right]
$$

$$
A\left(D^{0} \rightarrow K^{-} \pi^{+}\right)=\frac{G_{F}}{\sqrt{2}} V_{c s} V_{u d}^{*}\left[t_{\pi K}^{\text {fact }}\left(a_{1}+2 C_{2} r e^{i \delta_{r}}\right)+2 C_{1} E e^{i \delta_{E}}\right]
$$

$$
A\left(D_{s} \rightarrow \bar{K}^{0} K^{+}\right)=\frac{G_{F}}{\sqrt{2}} V_{c s} V_{u d}^{*}\left[t_{K K}^{\text {fact }}\left(a_{2}+2 C_{1} r e^{i \delta_{r}}\right)+2 C_{2} E e^{i \delta_{E}}\right]
$$

\star DCS amplitudes:

$$
\begin{aligned}
A\left(D^{0} \rightarrow \pi^{-} K^{+}\right) & =\frac{G_{F}}{\sqrt{2}} V_{c d} V_{u s}^{*}\left[t_{K \pi}^{\mathrm{fact}}\left(a_{1}+2 C_{2} r e^{i \delta_{r}}\right)+2 C_{1} E e^{i \delta_{E}}\right] \\
A\left(D^{+} \rightarrow \pi^{0} K^{+}\right) & =\frac{G_{F}}{2} V_{c d} V_{u s}^{*}\left[t_{K \pi}^{\text {fact }}\left(a_{1}+2 C_{2} r e^{i \delta_{r}}\right)-2 C_{2} E e^{i \delta_{E}}\right]
\end{aligned}
$$

\star Only four parameters to fit ($a_{1}=c_{1}+C_{2} / 3, a_{2}=c_{2}+C_{1} / 3$)

- calculate tree/color suppressed amplitudes
- assume SU(3) flavor symmetry for E and δ_{E}
- assume $S U(3)$ flavor symmetry for r and δ_{r}

$$
r e^{i \delta_{r}}=\frac{\left\langle P_{1} P_{2}\right| \widetilde{O}_{1,2}|D\rangle}{\left\langle P_{1} P_{2}\right| O_{1,2}|D\rangle}
$$

Combined fit: SCS amplitudes

* Analysis of SCS amplitudes is considerably more complicated
- calculate tree/color suppressed amplitudes
- utilize r and δ_{r} from CF/DCS analysis...
- ... but not E and δ_{E} (as it is topologically equivalent to "penguin annihilation")
- can drop SM "penguin operator" contribution (small Wilson coefficient)...
- ... but contributions from penguin-like contractions with s and d-quarks are big!
\star Use the fit from CF/DCS decays
$-r=0.25, \delta_{r}=1.78, E=-0.02 \mathrm{GeV}$, and $\delta_{E}=-0.17$
- ... for r and δ_{r}
-refit for other amplitudes, e.g.,

$$
\begin{gathered}
A_{K K}=\frac{G_{F}}{\sqrt{2}} \lambda\left[\left(T+\bar{E}+P_{s d}\right)+a \lambda^{4} e^{-i \gamma} P_{b d}\right] \\
A_{\pi \pi}=\frac{G_{F}}{\sqrt{2}} \lambda\left[\left(-(T+\bar{E})+P_{s d}\right)+a \lambda^{4} e^{-i \gamma} P_{b d}\right] \\
P_{s s}-P_{d d} \quad P_{b b}-P_{d d}
\end{gathered}
$$

* Work in progress to fit all amplitudes and predict other CPVAs

Khodjamirian, A.A.P. preliminary

Conclusions

> Charm provides great opportunities for New Physics studies

- unique access to up-type quark sector
> Observation of CP-violation in the current round of experiments provides further handle for studies of New Physics
- Different observables should be used to disentangle CP-violating contributions to $\Delta c=1$ and $\Delta c=2$ amplitudes
- Conservatively, current results can be ascribed to SM...
- ... but global fit differs significantly from B-decays
- The smoke from the smoking gun is quickly dissipating...

Additional slides

CP-violation in charmed baryons

> Other observables can be constructed for baryons, e.g.

$$
A\left(\Lambda_{c} \rightarrow N \pi\right)=\bar{u}_{N}(p, s)\left[A_{S}+A_{P} \gamma_{5}\right] u_{\Lambda_{c}}\left(p_{\Lambda}, s_{\Lambda}\right)
$$

These amplitudes can be related to "asymmetry parameter" $\alpha_{\Lambda_{c}}=\frac{2 \operatorname{Re}\left(A_{S}^{*} A_{P}\right)}{\left|A_{S}\right|^{2}+\left|A_{P}\right|^{2}}$
... which can be extracted from $\frac{d W}{d \cos \vartheta}=\frac{1}{2}\left(1+P \alpha_{\Lambda_{c}} \cos \vartheta\right)$
Same is true for $\bar{\Lambda}_{c}$-decay
If $C P$ is conserved $\alpha_{\Lambda_{c}} \stackrel{C P}{\Rightarrow}-\bar{\alpha}_{\Lambda_{c}}$, thus CP-violating observable is

$$
A_{f}=\frac{\alpha_{\Lambda_{c}}+\bar{\alpha}_{\Lambda_{c}}}{\alpha_{\Lambda_{c}}-\bar{\alpha}_{\Lambda_{c}}}
$$

FOCUS[2006]: $A_{\Lambda \pi}=-0.07 \pm 0.19 \pm 0.24$

