

The Dark Side of the Higgs Boson

Gabe Shaughnessy University of Wisconsin May 7, 2012

Pheno 2012

In collaboration with I. Low, P. Schwaller, C.E.M. Wagner Phys. Rev. D85 15009

Recent Higgs boson searches

- The Higgs appears evasive
 - Could be in the last place we look!
- Curious > 2σ excess seen around 125-126 GeV in both ATLAS and CMS
- What is it? 3 choices:
 - The Higgs!
 - Nothing just statistics
 - Some other resonance
- Huge 'desert' above 130 GeV up to >500 GeV excludes a SM Higgs

Can a SM Higgs still exist in this mass range?

- SM Higgs signature is modified by two possible effects:
 - Change in production rate (i.e. through mixing)
 - Change in BF to final state signature*

$$B\sigma(pp \to h \to X_{SM}) = \sigma(pp \to h) \times BF(h \to X_{SM})$$

• Coupling strength to decay modes assumed unchanged:

$$\Gamma_{h \to X_{SM}}^{SM} = \Gamma_{h \to X_{SM}}$$

 Modifications to production of signature distilled to changes in the Briet-Wigner lineshape of the Higgs Boson

$$B\sigma(pp \to h \to X_{SM}) = B\sigma^{(SM)}(pp \to h \to X_{SM}) \times \frac{\Gamma_{h_{SM}}}{\Gamma_{h_{SM}} + \Gamma(h \to X_{NP})}$$

 Present searches push the new physics (NP) contribution for intermediate masses to be: Γ(h → X_{NP}) ≥ Γ(h → X_{SM})

Measuring the Higgs BW line offers insight to the Higgs coupling to new physics!

Measuring the golden channel line

- Best possible route to measure line is via the golden channel
- Key is excellent momentum resolution of leptons:

$$\left(\frac{\Delta p}{p}\right)_{\mu} = 0.84\% \oplus 1\% \left(\frac{p_T}{100 \text{ GeV}}\right)$$

$$\left(\frac{\Delta p}{p}\right)_e = \frac{2.8\%}{\sqrt{p/\text{GeV}}} \oplus 12.4\% \frac{\text{GeV}}{p} \oplus 0.26\%$$

- We apply separate cuts for $\mu^+\mu^-\mu^+\mu^$ and $e^+e^-\mu^+\mu^-$ channels
- Best performer is the $e^+e^-\mu^+\mu^-$ channel:

Prominent backgrounds $Z + Z^*/\gamma^*, Zb\overline{b}, \text{ and } t\overline{t}$ Cuts offer good background rejection

Events simulated for Signal (Madgraph) and Background (Alpgen)

ZZ K-factor = 1.6 for background (MCFM)

Fitting the Higgs Lineshape

• Lineshape at its core is a Briet-Wigner expression

$$\frac{d\sigma_{\rm BW}(\sqrt{\hat{s}})}{dM_{4\ell}} = \frac{\hat{s}^{3/2}\sqrt{1-4x_Z}(1-4x_Z+12x_Z^2)}{((\hat{s}-M_h^2)^2+M_h^2\Gamma_h^2)}$$

• Experimental measurement is broadened by detector effects. We assume a broadening consistent with

$$\frac{d\sigma_{\rm Gauss}(M')}{dM_{4\ell}} = \frac{1}{\sqrt{2\pi}\sigma_{\rm exp}} e^{-\frac{M'^2}{2\sigma_{\rm exp}^2}},$$

• We fit the simulated lineshape to the convolution of the intrinsic lineshape and the experimental broadening:

$$\frac{d\sigma}{dM_{4\ell}} = \int dM' \frac{d\sigma_{\rm BW}(\sqrt{\hat{s}} - M')}{dM_{4\ell}} \frac{d\sigma_{\rm Gauss}(M')}{dM_{4\ell}}$$

May 7, 2012

Higgs line measurements

• $\mu^+\mu^-\mu^+\mu^-$ less sensitive than $e^+e^-\mu^+\mu^-$ due to event rate, ID and momentum resolution

- Combining channels gives O(20%) sensitivity for SM-like width
- Doubling width decreases sensitivity due to decreased event rate

Invisible Higgs decay searches

Phenomenology 2012

Invisible Higgs decay searches

- If the only new physics decay is invisible, connection to dark matter sector may be possible
- Excess in total width compared with SM prediction seen as the invisible decay width

Invisible Higgs decay searches

- If the only new physics decay is invisible, connection to dark matter sector may be possible
- Excess in total width compared with SM prediction seen as the invisible decay width
- Similar scenarios:
 - Doubling of total width (invisible decay)
 - Reduction of production cross section (Higgs-singlet mixing, NP in $gg \rightarrow h$
- Degeneracy broken with coupling measurements + Γ_h measurement

Comparison with other methods

- Direct invisible decay searches involve Vector Boson Fusion
 - Relies heavily on correlated forward jets
 - Best sensitivity to low mass Higgs

Eboli, Zeppenfeld (2000)

- Line measurement offers complementary probe if new physics decay mode is invisible
- Relatively constant sensitivity to larger masses
 - Balance between lower production cross section and larger total SM Higgs width

Connection to Dark Matter

- Higgs connection to DM can be written as $\mathcal{L} = \delta_c m_s^2 |S|^2 + \delta_c \lambda_s H^{\dagger} H |S|^2$ $\mathcal{L} = \delta_c m_f \bar{\psi} \psi + \delta_c \frac{\lambda_f}{\Lambda} H^{\dagger} H \bar{\psi} \psi$
- Decay widths to fermionic/scalar DM $\Gamma_{ff} = \delta_c \frac{1}{8\pi} \tilde{\lambda}_f^2 m_h \left(1 - \frac{4m_f^2}{m_h^2}\right)^{3/2}$ $\Gamma_{ss} = \delta_c \frac{\lambda_s^2 v^2}{16\pi m_h} \sqrt{1 - \frac{4m_s^2}{m_h^2}}$
- Threshold for decay to DM requires $m_h > 2m_{DM}$

Dark Matter Consistency

- If DM saturates relic density, tension between direct detection limits from Xenon-100 and the ATLAS/CMS Higgs exclusion
- Tension lessened if invisible state assumed not to be the sole contributor to DM relic density

Summary

- A moderate to heavy Higgs can be accommodated w/in the ATLAS and CMS results by allowing the Higgs to decay to new physics
- The Higgs decay lineshape can offer insight to new physics and its connection with the EWSB sector
- In context of invisible states like DM, the reach is complementary to the direct searches via Vector Boson Fusion
- One shouldn't prematurely dismiss the heavy Higgs scenario!

Backup Slides

Scalar Dark Matter

Partial width Reach

- Luminosity required to exclude enhanced width
 - By increasing width, smaller production of signal is compensated for by wider lineshape

