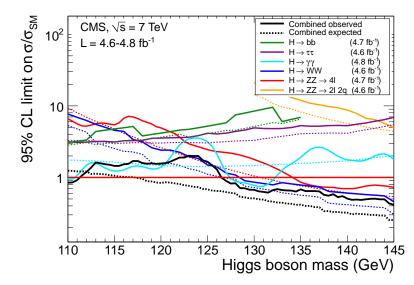
Can We See a Light Higgs in $WW^* \rightarrow jjl\nu$?

J. Sayre

Homer L. Dodge Department of Physics University of Oklahoma


Based on work with C. Kao

Executive Summary

Yes, eventually. Probably not this year.

Motivation

We were all excited by the prospect of an excess of events in 2011 data at both ATLAS and CMS that could correspond to a Higgs with mass ~ 125 GeV. The excess was primarily in $\gamma\gamma$, with some surplus in ZZ - > 4l as well.

If we can see ZZ^* then WW^* should have a comparable or better rate since W^* is less off-shell than Z^* .

Taking into account the 'look elsewhere' effect, the ZZ^* excess appears to be unremarkable. Nonetheless, the question remains: Will we be able to see WW^* in the foreseeable future with a light Higgs?

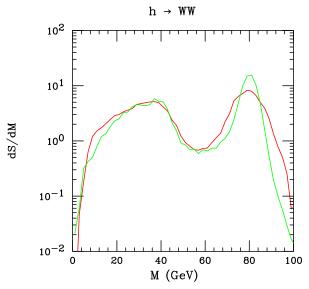
Signal Modes

 WW^* has 3 modes of decay: leptonic $(l\nu l\nu)$, semi-leptonic $(jjl\nu)$, and fully hadronic (jjjj).

All-leptonic mode has been searched for at detectors. No significant excess seen so far. [CMS Collaboration,2012 1202.1489 [hep-ex]]

- + Weak backgrounds, no jets.
- Two neutrinos limit ability to reconstruct a resonant mass.

Semi-leptonic mode generally viewed as unfavorable at lower masses. [Han, Turcot & Zhang, 1999 9812275 [hep-ph]; Menon & Sullivan, 2010 1006.1078 [hep-ph]]


- Large QCD backgrounds.
- + One neutrino allows for better reconstruction of events.

We consider prospects for the latter in this talk.

Strategy

Primary background will be W_{jj} generated by QCD processes.

For $M_h \sim 125$ GeV, resonant production of the Higgs requires one of the signal W's to be far off shell, $M_{W*} \sim 45$ GeV. Invariant mass distribution for $W_{l\nu}$ or W_{jj} will have two modes.

The background is dominated by an on-shell $W_{l\nu}$ and a smoothly falling jj distribution.

Thus we choose to focus on the signal events with W_{jj} on shell and $W_{l\nu}$ well below nominal M_W .

Reconstructing the Event

We have one neutrino with a significant fraction of the total momentum. We assume $MET = p(\nu)_T$ but $p(\nu)_z$ is unknown.

Consider

$$M_T(W)^2 \equiv (E(l)_T + E(\nu)_T)^2 - (\overline{p}(l)_T + \overline{p}(\nu)_T)^2$$

$$\simeq (|p(l)_T| + |p(\nu)_T|)^2 - (p(l)_T + p(\nu)_T)^2.$$

This mass corresponds to the value we get from minimizing $M_W(p(\nu)_z)$ with respect to $p(\nu)_z$.

$$p(\nu)_{z} = \frac{p(l)_{z}p(\nu)_{T}}{\sqrt{E(l)^{2} - p(l)_{z}^{2}}}.$$

This principle can be easily generalized to the invariant mass of any number of particles.

Cluster Mass

Minimizing $M_h(p(\nu)_z) \equiv (p(j) + p(j') + p(l) + p(\nu))^2$ yields the Cluster Mass:

$$M_c(h)^2 \equiv (\sqrt{M_{jj'l}^2 + p(\nu)_T^2} + p(\nu)_T)^2.$$

This is equivalent to choosing

$$p(\nu)_{z} = \frac{p(jj'l)_{z}p(\nu)_{T}}{\sqrt{E(jj'l)^{2} - p(jj'l)_{z}^{2}}}.$$

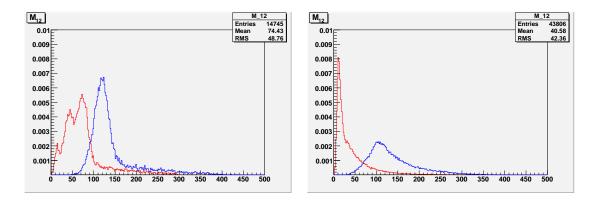
Since we are at a minimum, minor variations in $p(\nu)_z$ do not have a strong effect on the mass distributions.

Weighted Average

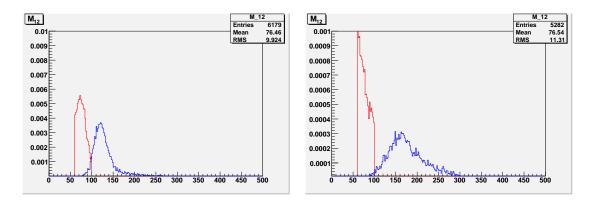
Since we are searching for a peak at the low end of the spectrum generated by our signal, choosing a minimum $M(W)_{l\nu}$ or M(h) does a good job reproducing the actual peak.

In fact, we can choose a weighted function

$$p(\nu)_{z} = \frac{(p(jj'l)_{z} * M_{T}(W)^{2} + p(l)_{z} * M_{c}(h)^{2})p(\nu)_{T}}{\sqrt{(E(jj'l) * M_{T}(W)^{2} + E(l) * M_{c}(h)^{2})^{2} - (p(jj'l)_{z} * M_{T}(W)^{2} + p(l)_{z} * M_{c}(h)^{2})}}$$


which minimizes the product $M_h * M_w$.

This does a better job of reproducing both the $M_{l\nu}$ and $M_{jjl\nu}$ curves accross the entire spectrum with one choice of $p(\nu)_z$.


In practice, after cuts all three choices of $p(\nu)_z$ will give very similar mass distributions.

Useful Cuts

After setting $p(\nu)_z$ as described, we can reconstruct all the kinematics of our event. Our most powerful cuts will be selecting $M_{jj} \sim M_W$ and $M_{jjl\nu} \sim M_h$.

Selecting for on-shell hadronic W.

Angular Correlations

Because we are looking for a scalar decaying to two vector bosons, which then each decay via left-handed couplings, there are angular correlations which might prove useful. [cf. Dobrescu & Lykken, 2009 0912.3543 [hep-ph]]

Generally, this means that the up (down)-type quark will tend to be anti-aligned with the charged (neutral) lepton.

We don't know which jet comes from the up-type quark, but the planes of each W-decay will tend to align. This can be parameterized by:

- \oint ϕ : The angle between the $l\nu$ and jj' planes in the rest frame of the Higgs.
- Image the set of θ^l : The angle between the l momentum and the direction of the $W_{l\nu}$ boost in the rest frame of $W_{l\nu}$.
- θ^{j} : The angle between the leading jet momentum and the direction of the W_{jj} boost in the rest frame of W_{jj} .

The signal is maximized for $\phi \simeq 0, \pi, \theta^j, \theta^l \sim \frac{\pi}{2}$.

Simulation

- We generate signal and background events using MadGraph/MadEvent. ISR can play a significant role. To handle this consistently we make use of a matching scheme (MLM matching) to merge showering effects with matrix element calculations including up to 3 jets.
- Events are fed through Pythia 6.4 for showering and hadronization. Reconstruction is done with the Delphes detector simulator. We use a Cambridge-Aachen algorithm with 0.5 cone size for jet reconstruction.
- We apply a simulated Jet Energy correction based on the average energy loss (as a function of $|\overline{p}|$ and η) from a comparison of Monte Carlo generated events at parton and jet level.
- Solution We select the leading two jets (in p_T) and the leading electron as our candidate particles with a neutrino inferred as above. For the results below we set $M_h = 125$ GeV with Standard Model couplings.
- We assume l includes electrons and muons but not taus.

Cuts

- $65 < M_{jj} < 95 \, \text{GeV}$
- $M_{jjl\nu} < 130 \text{ GeV}$
- **9** $M_{l\nu} < 40 \, \text{GeV}$
- $p_T(j_1), p_T(j_2) > 30, 20 \text{ GeV}$
- I MET < 35 GeV
- $E_{l\nu}^0 < 45 \text{ GeV}$ (Energy of $W_{l\nu}$ in frame of h^0)

We find that including cuts on the angular correlations or tightening the cuts above can improve the ratio of S/B but will lower the statistical significance S/\sqrt{B} .

n.b. The two jets are typically well separated in our signal, $\Delta R_{jj} \gtrsim 2$. However,

after the above cuts the background jets are also usually separated.

Results

Events per fb^{-1}

At $8 \ \mathrm{TeV}$

Signal	W j j	WW	$t\overline{t}$
22.6	3130	55.8	12.9

Significance with 16fb^{-1} : 1.6σ

At 14 TeV

Signal	W j j	WW	$t\overline{t}$
46.3	3930	79.0	31.2

Data required for 5σ discovery: 46.8fb⁻¹

 $WW \rightarrow jjl\nu$ (on this analysis) will not lead to a discovery in this channel with 2012 running. We may see a weak hint which could contribute to a combined signal or limit.

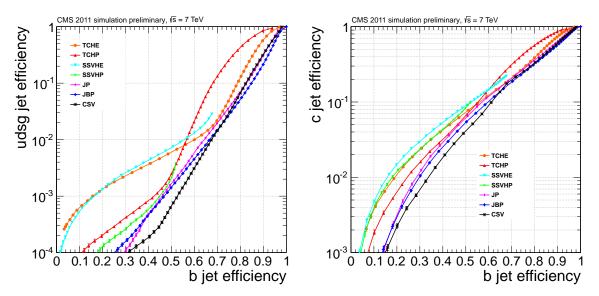
C-tagging

Menon and Sullivan have advocated the development of c-tagging algorithms which might enhance this channel (and others). [Menon & Sullivan, 2010]

- + If we focus on the signal with a c-quark in the final state, then we start with half the signal rate since we exclude $W \rightarrow ud$ decays. However, the Wjj background is dominated by light quark jets and gluons. The Wcjcomponent is roughly $\sim \frac{1}{6}$ the total before cuts.
- + Additionally, if we can identify the *c*-originating jet, we can improve on the angular correlations since we know which jet should align or anti-align with the charged lepton.

Is c-tagging possible?

In fact, we already have a weak version of c-tagging. B-tagging algorithms will (mis)tag c-jets at a much higher rate than light-quark jets.


E.g., for a b-jet efficiency of $\sim 55\%$, c-jets will be tagged at a rate of 10 - 15% while light jets (*udsg*) are tagged at $\lesssim 1\%$.

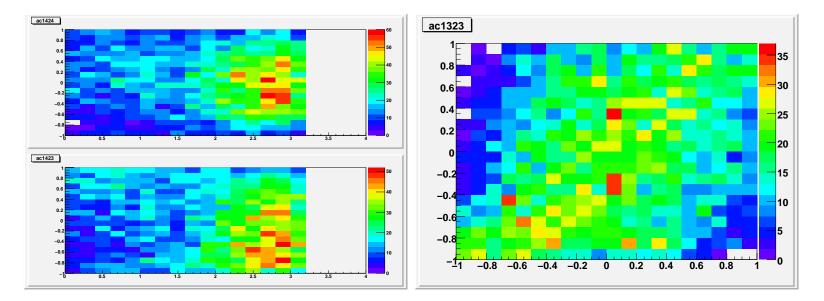
Acceptance can be tuned by adjusting algorithm cut parameter. As we increase the b-jet efficiency we also increase the acceptance of c-jets.

Even 100% acceptance of b-jets is not a problem for us since we are primarily concerned with rejecting a background dominated by light jets.

However, we would require both high c-jet acceptance and good rejection of light jets.

Current B-Tagging Performance

For current b-tagging algorithms, high acceptance does not provide sufficient discrimination against light jets.


New algorithms designed to single out c-jets from light jets would be needed.

C-tagging Cuts

Angular cuts provide a marginal improvement in statistical significance, but raise $\frac{S}{B}$ and provide a large reduction in non-Wcj backgrounds.

- $\oint \phi > 1.6$

$$0.9\cos\theta^l - 1 < \cos\theta^j < 2\cos\theta^l + 1$$

C-tagging Prospects (Ideal)

With essentially perfect c-tagging (100% acceptance of c-jets, $\leq 1\%$ mis-tagging of light jets) we would have notable ($\sim 60\%$) gain in significance.

8 TeV:

Signal	Wcj	WW	$t\overline{t}$
5.6	66.1	5.4	~1

 2.6σ significance with 16 fb⁻¹.

14 TeV:

Signal	Wcj	WW	$t\overline{t}$
11.8	160	8.8	10

Discovery with 32fb^{-1} .

Also note improved $\frac{S}{B}$.

C-tagging Prospects (More Realistic)

However, for a more moderate c-tagging model with 50% acceptance, we find only a small gain in statistical significance. We assume 1% mis-tagging for light jets as an illustration.

This case would retain improvement in $\frac{S}{B}$ compared to the untagged case.

8 TeV:

Signal	Wcj	W j j	WW	$t\overline{t}$
2.9	34.4	5.4	5.7	1

 1.7σ significance with 16 fb⁻¹.

14 TeV:

Signal	Wcj	W j j	WW	$t\overline{t}$
6.1	83.2	11.6	9.1	10.

Discovery with 76.5 fb⁻¹.

Longer Summary

- The channel $h \rightarrow WW \rightarrow jjl\nu$ is difficult but not impossible to see for a ~ 125 GeV Higgs. After 2012 running at the LHC we could see a hint in this channel but it will likely take a few 10's of femtobarns at 14 TeV running to reach discovery levels.
- Jet energy resolution is a major limiting factor in our analysis. Since jets are typically $p_T < 40$ GeV we are sensitive to jet-energy corrections and loss of resolution for M_{jj} and $M_{jjl\nu}$. Use of Particle Flow jets or other refinements may improve our results significantly.
- We also consider the prospects for this channel with c-tagging as suggested by Sullivan and Menon. With excellent c-tagging we could see $\sim 60\%$ improvement in our significance. With mid-range c-tagging capabilities we would see only modest gains.