SUSY w/o Prejudice @ LHC-7 /8 : Part I

5/7/12

M.W. Cahill-Rowley, J.L. Hewett, S. Hoeche, A. Ismail, T.G.R.

Searches for SUSY @ the LHC have not found any signals (yet)...

It would seem useful to go beyond the cMSSM or any particular SUSY breaking scheme to study the MSSM more generally

pMSSM Analysis Assumptions

The MSSM has too many parameters so we make assumptions to reduce these to a reasonable level

- The most general, CP-conserving MSSM with R-parity
- Minimal Flavor Violation at the TeV scale
- The lightest neutralino or the gravitino is the LSP.
- The first two sfermion generations are degenerate (sfermion type by sfermion type).
- The first two generations have negligible Yukawa's.
- No assumptions about SUSY-breaking or GUT
- \rightarrow the <u>pMSSM</u> with <u>19/20</u> real, TeV/weak-scale parameters...

<u>Choose</u> the ranges of these parameters & how they're selected

Scan: look for ~250k points in these spaces satisfying all existing data & study their signatures @ the LHC & elsewhere.. NO FITS! ³

Two New pMSSM Scans: Neutralino & Gravitino LSPs

(via <u>SOFTSUSY</u>

 $100 \text{ GeV} \le m_{\text{LI1,2,3}} \le 4 \text{ TeV} \qquad \text{+SuSpect + FeynHiggs+}$

 $400 \; GeV \leq m_{Qud1,2} \; \leq 4 \; TeV \qquad 200 \; GeV \leq m_{Qud3} \; \leq 4 \; TeV$

 $\begin{array}{ll} 50 \ GeV \leq |M_1| \leq 4 \ TeV & 100 \ GeV \leq |M_2, \ \mu| \leq 4 \ TeV \\ 400 \ GeV \leq M_3 \leq 4 \ TeV & |A_{t,b,\tau}| \leq 4 \ TeV \end{array}$

 $\begin{array}{ll} 100 \; \text{GeV} \leq \; M_A \; \leq 4 \; \text{TeV} \\ 1 \leq tan\beta \leq 60 \end{array}$

 \rightarrow For the gravitino LSP: 1 ev $\leq m_G \leq 1$ TeV (log scan)

 Apply all the usual non-LHC + all LHC <u>non-MET</u> constraints (as of 12/1/2011). Additional complexities occur, eg, BBN constraints for the gravitino LSP case

Some Constraints

- $\Delta \rho$ / W-mass
- b →s γ
- Δ(g-2)_μ
- Γ(Z→ invisible)
- Meson-Antimeson Mixing
- $B \rightarrow \tau \nu$
- $B_s \rightarrow \mu \mu$

- Direct Detection of Dark Matter (SI & SD)
- WMAP Dark Matter density upper bound
- LEP and Tevatron Direct Higgs & SUSY searches

- BBN energy deposition for gravitinos
- Relic v's & diffuse photon bounds

- No tachyons or color/charge breaking minima
- Stable vacua only

Let's investigate the other side of life: gravitino LSPs

- <u>NOT</u> generalized GMSB.. NO assumptions except that the gravitino is the LSP. <u>Anybody</u> can be the NLSP.
- BBN... NLSPs in this scenario tend to be long lived & decays inject hadronic &/or EM energy, possibly disrupting BBN
- Lots of NEW code needed, e.g., generalize all NLSP/NNLSP decays to the case of arbitrary gravitino mass .. Existing codes inadequate !

Some New Features

- For non-G decays (e.g., for the NNLSP → NLSP) add all 3-body sparticle decays not in SUSY-Hit via CalcHEP
- Add relevant 4 & 5-body decays for gluinos, t_1 & χ_1^{\pm}
 - → <u>NNLSPs can be detector stable</u>
- For NLSP decays to G, add all 3- & 4-body modes w/ BBN relevant lifetimes (~10⁻⁴ to 10¹⁴ sec) via MadGraph
- Calculate NLSP density using Micromegas & rescale to the gravitino mass
- Use lifetime & BF info for NLSPs from modified SUSY-Hit & check the constraints on EM or hadronic energy deposition during BBN
- Add constraints from the cosmo relic v & diffuse photon fluxes

E.g., even if t₁ is the <u>NNLSP</u> it may STILL be detector stable

Some properties of the gravitino & the NLSP in the gravitino model set

- The frequency of various NLSP identities is very strongly dependent on the LSP choice
- This can have a potentially large influence on LHC SUSY searches (apart from, e.g., additional cascades)
- The lightest neutralino plays an important role in either model set

Electroweak Content of χ_1^0

Lightest Neutralino	Definition	Neutralino LSP	Gravitino LSP
Bino	$ N_{11} ^2 > 0.95$	0.024	0.313
Mostly Bino	$0.80 < N_{11} ^2 < 0.95$	0.002	0.012
Wino	$ N_{12} ^2 > 0.95$	0.546	0.296
Mostly Wino	$0.80 < N_{12} ^2 < 0.95$	0.022	0.019
Higgsino	$ N_{13} ^2 + N_{14} ^2 > 0.95$	0.340	0.296
Mostly Higgsino	$0.80 < N_{13} ^2 + N_{14} ^2 < 0.95$	0.029	0.029
All other models	$ N_{11} ^2, N_{12} ^2, N_{13} ^2 + N_{14} ^2 < 0.80$	0.036	0.035

With most of the neutralino parameters ~ 1 TeV the mass & electroweak eigenstates are generally quite close ! 12

- The mass spectra of the MSSM fields are (indirectly) influenced by the nature of the LSP, i.e., the fact that G can be VERY light whereas χ_1^0 must be > ~ 10's of GeV in the scan..
- E.g., since the lightest neutralino is at best the NLSP in the G scan, its mass distribution must now extend to larger values
- Other sparticle masses are less influenced due to scan ranges

- Although the h mass itself is not part of the scan, the slightly different mass specta in the G scan contribute, via loops, to a somewhat lighter Higgs
- Some other observables show similar size effects but are not really very different in the two model sets :

 Overall, these are quite minor differences. The important differences for LHC searches are the nature of the LSP & ID of the NLSP → Now that you've seen a bit about how these model sets are generated & some of their properties, Ahmed will now tell you about some of the implications of these model sets for physics at the LHC. BACKUPS

- Mass distributions for sparticles that are restricted to be >400 GeV will be less affected than those that must be >100 GeV by the choice of LSP.
- However, some of these small spectrum shifts can & do influence other observables....

Sample constraints from BBN and diffuse γ's for different hadronic branching fractions of the NLSP

Shaded areas show where our gravitino models live

We follow :

Jedamzik; Kusakabe et al.; Kanazki et al.; Kribs and Rothstein

A much larger volume needs to be explored...

.... for both gravitino and neutralino LSPs

χ_1^0 LSP DM Observables

