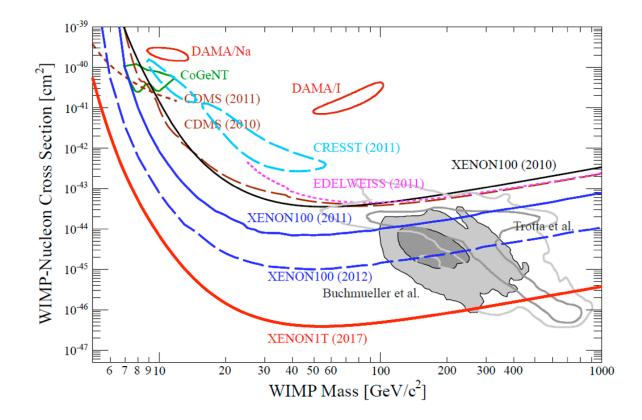

Naturalness in Supersymmetry and Dark Matter Direct Detection

Natural SUSY: The LHC perspective

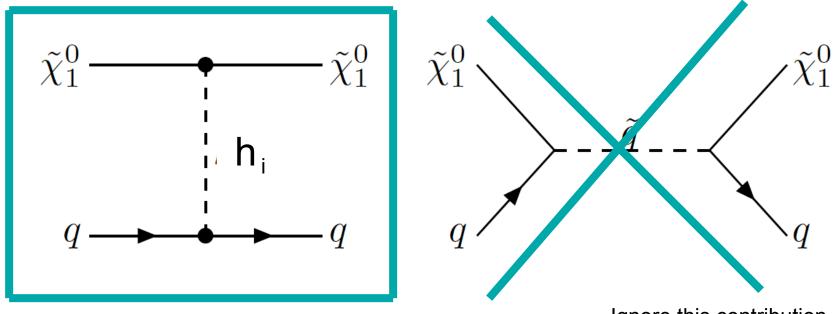
- No superpartners observed so far
- SM-like Higgs at 125 GeV
- **MSSM**: need large loop level correction, *extremely* fine-tuned

 $m_h^2\,=\,M_Z^2\cos^22\beta+\delta_t^2$


NMSSM: additional tree level contribution, 125 GeV higgs natural with large λ (~0.6), small tanβ (~1)

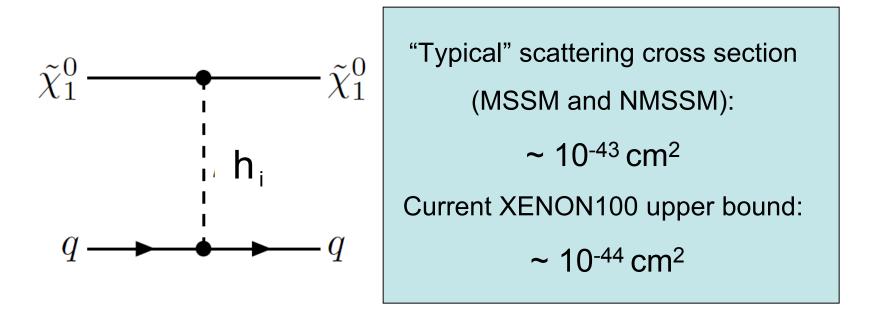
$$m_h^2 = M_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta + \delta_t^2$$

 λ-SUSY: 0.75<λ<2, Landau pole below GUT scale but satisfies all experimental constraints; can get 125GeV higgs at tree level, mass scales can be raised by a factor of λ/g, natural to have superpartners closer to TeV scale.


(Hall, Pinner ,Ruderman; hep-ph 1112.2703)

Another Probe: Dark Matter Direct Detection

- Lightest neutralino in supersymmetry: our favorite dark matter candidate
- Nothing at XENON100, update imminent, XENON1T planned
- Limits can give meaningful constraints on parameter space


Spin independent scattering

Ignore this contribution

Direct detection cross section depends only on gaugino masses and parameters in the Higgs sector

Spin independent scattering

Fine-tuning ???

Quantifying (EWSB) Fine-tuning

• Tree level relation for m_z:

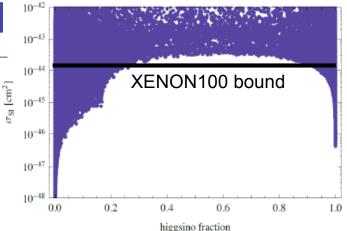
$$m_Z^2 = -m_u^2 \left(1 - \frac{1}{\cos 2\beta} \right) - m_d^2 \left(1 + \frac{1}{\cos 2\beta} \right) - 2|\mu|^2$$

- If terms on r.h.s. are not ~100 GeV, need cancellations to make things work. Fine-tuning !
- Calculate sensitivity to small changes in Lagrangian parameters:

$$\delta(\xi) = \left| \frac{\partial \log m_Z^2}{\partial \log \xi} \right|$$

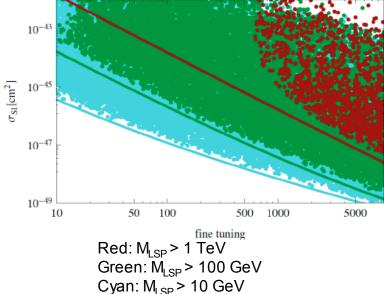
• In general, large μ gives greater fine-tuning.

- Define Lagrangian parameters independently at EW scale (ie assume no relations such as unification), scan over parameters (allowed to be negative)
- Relic density: generally ignored (mild constraints for pure higgsinos and singlinos)
- **Ignore accidental cancellations**: want to make general statements true in most of parameter space
- Other Requirements:


neutralino LSP; charginos heavier than 103 GeV; light neutralinos satisfy experimental constraint on Z invisible width;

Higgs sector: require tree level contribution to SM-like Higgs mass to exceed 100GeV, then fix at m_h =125 GeV. (physical) Higgs masses nontachyonic (no additional collider constraints imposed)

Briefly: Dark Matter in MSSM


$$\tilde{\chi}_1^0 = Z_{\chi 1}\tilde{B} + Z_{\chi 2}\tilde{W}^3 + Z_{\chi 3}\tilde{H}_d^0 + Z_{\chi 4}\tilde{H}_u^0$$

$$\begin{split} \tilde{\chi}^0 \tilde{\chi}^0 h : & (g Z_{\chi 2} - g' Z_{\chi 1}) (\cos \alpha Z_{\chi 4} + \sin \alpha Z_{\chi 3}) \\ \tilde{\chi}^0 \tilde{\chi}^0 H : & (g Z_{\chi 2} - g' Z_{\chi 1}) (\sin \alpha Z_{\chi 4} - \cos \alpha Z_{\chi 3}) \end{split}$$

Gaugino-like: requires μ to be raised relative to M₁ or M₂ Higgsino-like: relic density too small unless TeV scale; μ ~TeV Recall: large μ is fine-tuned.

- Current XENON bound: More than 10% fine-tuning above 70 GeV
- Xenon 1T will probe regions with finetuning down to percent level.

Extend MSSM by a gauge singlet superfield S. Superpotential contains:

$$\lambda \hat{S} \hat{H}_u \cdot \hat{H}_d + \frac{\kappa}{3} \hat{S}^3$$

Generates an effective μ_{eff} = λ s when the singlet gets a vev s.

Fermionic component of S gives an additional neutralino: singlino. Mixes with the four MSSM neutralinos.

$$\begin{pmatrix} M_{1} & 0 & -\frac{g_{1}v_{d}}{\sqrt{2}} & \frac{g_{1}v_{u}}{\sqrt{2}} & 0 \\ M_{2} & \frac{g_{2}v_{d}}{\sqrt{2}} & -\frac{g_{2}v_{u}}{\sqrt{2}} & 0 \\ 0 & -\mu_{\text{eff}} & -\lambda v_{u} \\ 0 & 0 & -\lambda v_{d} \\ & & 2\kappa s \\ = 2\kappa \mu_{\text{eff}}/\lambda \end{pmatrix}$$

CP even singlet higgs: mixes with higgs doublet.

125 GeV SM-like (mostly doublet) higgs provides interesting constraints!

$$\begin{split} H_{\text{physical}} &= s_{j} H_{j}, \quad H_{j} = \{H_{u}, H_{d}, S\} \\ \chi_{\text{physical}} &= n_{j} \chi_{j}, \quad \chi_{j} = \{B, W_{3}, H_{u}^{0}, H_{d}^{0}, S\} \end{split}$$

$$h_{i} \chi \chi &= \frac{\lambda}{\sqrt{2}} (s_{H_{d}} n_{\tilde{H}_{u}} n_{\tilde{S}} + s_{H_{u}} n_{\tilde{H}_{d}} n_{\tilde{S}} + s_{S} n_{\tilde{H}_{u}} n_{\tilde{H}_{d}}) \\ &- \sqrt{2} \kappa s_{S} n_{\tilde{S}} n_{\tilde{S}} \\ &+ \frac{g_{1}}{2} (s_{H_{d}} n_{\tilde{B}} n_{\tilde{H}_{d}} - s_{H_{u}} n_{\tilde{B}} n_{\tilde{H}_{u}}) \\ &- \frac{g_{2}}{2} (s_{H_{d}} n_{\tilde{W}_{0}} n_{\tilde{H}_{d}} - s_{H_{u}} n_{\tilde{W}_{0}} n_{\tilde{H}_{u}}) \end{split}$$

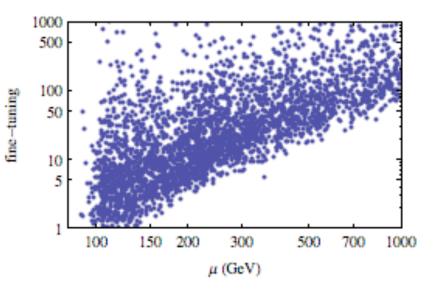
$$\begin{aligned} & H_{\text{physical}} = \mathbf{s}_{j} \mathbf{H}_{j}, \quad \mathbf{H}_{j} = \{\mathbf{H}_{u}, \mathbf{H}_{d}, \mathbf{S}\} \\ & \chi_{\text{physical}} = \mathbf{n}_{j} \chi_{j}, \quad \chi_{j} = \{\mathbf{B}, \mathbf{W}_{3}, \mathbf{H}_{u}^{0}, \mathbf{H}_{d}^{0}, \mathbf{S}\} \end{aligned} \\ & h_{i} \chi \chi = \frac{\lambda}{\sqrt{2}} (s_{H_{d}} n_{\tilde{H}_{u}} n_{\tilde{S}} + s_{H_{u}} n_{\tilde{H}_{d}} n_{\tilde{S}} + s_{S} n_{\tilde{H}_{u}} n_{\tilde{H}_{d}}) \\ & -\sqrt{2} \kappa s_{S} n_{\tilde{S}} n_{\tilde{S}} \\ & + \frac{g_{1}}{2} (s_{H_{d}} n_{\tilde{B}} n_{\tilde{H}_{d}} - s_{H_{u}} n_{\tilde{B}} n_{\tilde{H}_{u}}) \\ & - \frac{g_{2}}{2} (s_{H_{d}} n_{\tilde{W}_{0}} n_{\tilde{H}_{d}} - s_{H_{u}} n_{\tilde{W}_{0}} n_{\tilde{H}_{u}}) \\ \end{aligned} \right\} \text{ large cross section if gaugino-higgsino}$$

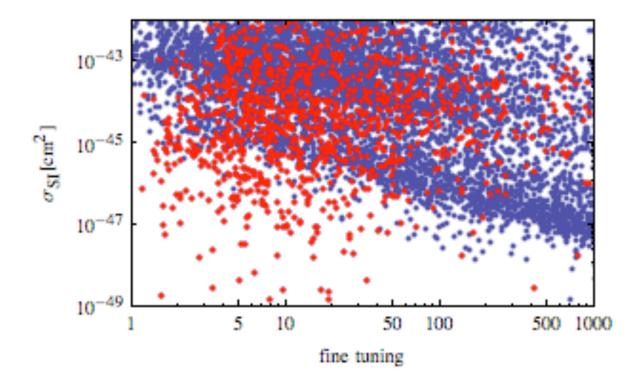
 λ ~0.6 for 125 GeV higgs, large contribution if higgsino-singlino

Are deviations from gaugino-higgsino or gaugino-singlino fine-tuned?

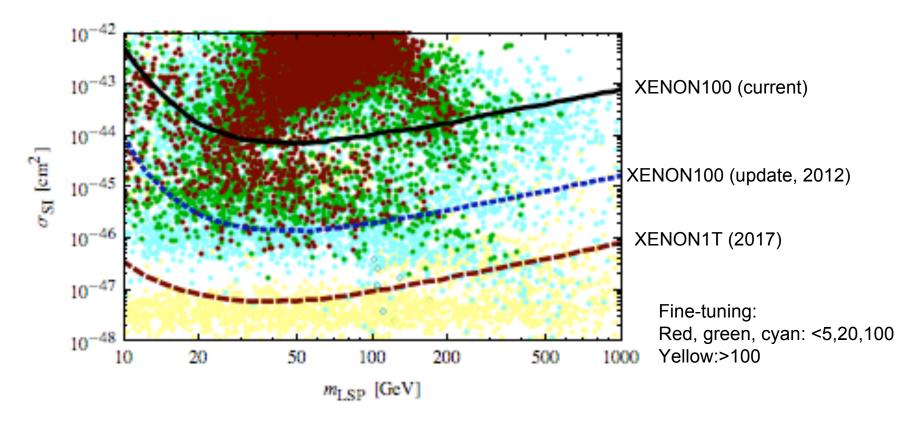
Similar insight: large μ is fine-tuned

Gaugino or gaugino-singlino: requires lifting μ far above M₁, M₂


Higgsino:


relic density too low unless TeV scale

Singlino:


requires $\kappa < \lambda$; no significant coupling to anything, relic density too high

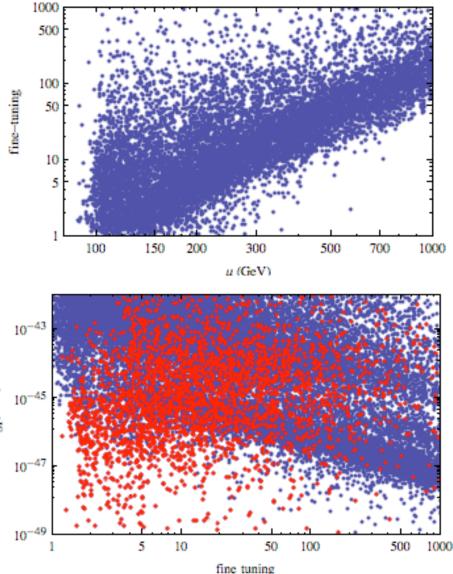
Lower direct detection cross section involves fine-tuning.

Red: points with accidental cancellations (small change in input parameters changes cross-section by a huge amount)

Points evading current XENON100 constraints but accessible to upcoming update: < 20% tuning, very natural!

Within reach of XENON1T: < 5% tuning.

λ -SUSY


0.75<λ<2.

Mass scales can be raised by a factor of λ /g (ie fine-tuning better by this factor)

Singlino-gaugino component gives large cross sections because of large λ , need to suppress them further

Small cross section at low masses more natural.

XENON1T reach similar to NMSSM case (5-10%).

Summary

Dark matter considerations can give meaningful constraints on naturalness of supersymmetry

NMSSM (including λ -SUSY) with SM-like 125 GeV higgs

- Upcoming XENON100 update will probe a very natural (< 20% tuning) region of NMSSM, might see something!
- Lowering the direct detection cross section further requires some fine-tuning; XENON1T will probe NMSSM down to a tuning of ~5%.
- λ -SUSY: fine-tuning slightly alleviated. XENON1T will still probe it down to tuning of 5-10% level.
- MSSM: >10% tuned from current XENON100 data, sub-percent level tuning with XENON1T. But already excessively tuned for 125GeV higgs.

THANK YOU!