Searches for direct supersymmetric gaugino production and R-parity violation in final states with leptons with the ATLAS detector

Phenomenology 2012, University of Pittsburgh May 7-9, 2012

Hideki Okawa (Brookhaven National Laboratory)

on behalf of the ATLAS Collaboration

Why Supersymmetry?

- Mathematical beauty / Ingredients to the String Theory
- Grand Unification
- Solution to hierarchy problem / Stabilization of Higgs mass

In this talk

Will present results of supersymmetry searches using events with leptons with the ATLAS detector at the LHC (2011 data)

- R-parity conserving cases: ≥2-lepton searches for direct gaugino processes; interpreted with simplified models & pMSSM
- R-parity violating (RPV) cases: Stau-LSP, e-μ resonance/continuum from a tau sneutrino/stop, 1-lepton search for bilinear RPV in mSUGRA

LHC & ATLAS

Large Hadron Collider (LHC)

- pp collisions at $\sqrt{s}=7$ TeV in 2011
- Peak luminosity of 3.65×10³³ cm⁻²s⁻¹
- Total delivered lumi. 5.61 fb⁻¹ (93.5% recorded in ATLAS)

ATLAS detector

28/02

Total Integrated Luminosity [fb

• Precision tracking inner detectors (ID)

ATLAS Online Luminosity $\sqrt{s} = 7 \text{ TeV}$

30/06

30/08

31/10

Day in 2011

LHC Delivered ATLAS Recorded

Total Delivered: 5.61 fb1

Total Recorded: 5.25 fb¹

30/04

- Electromagnetic (EM) & hadronic calorimeters
- Muon spectrometer (MS) w/ toroidal magnetic field
- Trigger systems (Level-1,2 & Event Filter)
- Forward detectors for luminosity measurement

Leptons & Fake Estimation

- Electrons: Reconstructed from energy deposit in the EM calorimeter & an associated ID track. p_T cut at 10 GeV or higher. An isolation cut is further applied.
- MUONS: Reconstructed by combining ID and MS tracks. p_T cut at 10 GeV or higher in the analyses shown in this talk. Isolation cuts are further applied.

 Fake leptons: e,µ's originating from heavy flavor jets or photon conversion Data-driven Estimation of Fakes (Matrix Method)

NTT]	rr	rf	fr	ff	$[N_{RR}]$
N_{TL}	r(1 - r)	r(1 - f)	f(1 - r)	f(1 - f)	N _{RF}
N_{LT}	(1 - r)r	(1 - r)f	(1 - f)r	(1 - f)f	N _{FR}
N _{LL}	(1-r)(1-r)	(1-r)(1-f)	(1-f)(1-r)	(1 - f)(1 - f)	$[N_{FF}]$

From data

r: 1-lepton real efficiency = "loose" real lepton passing "tight" selection

- f: 1-lepton fake rate = "loose" fake lepton passing "tight" selection
- Count events with "tight" leptons (dominated by real leptons) & "loose" leptons (dominated by fakes)
- Solve the linear equations for N_{RR}, N_{RF}, N_{FR}, N_{FF}

To be estimated

N _{ij} : number of events w/ lepton i,j
T: "tight" selection L: "loose" selection
R: real lepton F: fake lepton

Direct Gaugino Searches ~ R-parity Conserved ~

- Weak-gauginos could be accessible at the LHC due to naturalness
- Among wino-like gaugino pair-productions, $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ has the largest cross sections \rightarrow sensitivity in <u>same-sign 2 & 3-lepton channels</u>
- Winos emit leptons when they decay to:
 - Slepton+lepton (when slepton is light): $BR(\rightarrow lep)$ would be close to 1
 - $W/Z^{(*)}+LSP : BR(\rightarrow lep)$ is small. Not promising for a few fb⁻¹ of data

Phenomenology 2012, May 5-7, 2012

SS 2-Lepton Search (1 fb⁻¹)

Signal region (SR): Same-sign 2-lepton (e,µ), m_{II}>12 GeV, E_T^{miss}>100 GeV

Background (BG)

- Fake BG: One or two fake leptons from heavy-flavor & fake electrons from photon-conversions. Estimated using a data-driven method (Matrix Method)
- Charge flip: Electrons only (e⁻hard)→e⁻soft γhard →e⁻soft e⁻soft e⁻soft e⁺hard). Mainly from tt. MCbased estimation, but correction for charge flip ratio is extracted from data.
- Dibosons (WZ, W[±]W[±]+jets): MC-based. WW, WZ, ZZ cross sections are already measured at the LHC & consistent with the theoretical expectation.

Same Sign [SS-SR1]	$e^{\pm}e^{\pm}$	$e^{\pm}\mu^{\pm}$	$\mu^{\pm}\mu^{\pm}$
Fake	3.5 ± 1.6	14.4 ± 4.4	9.2 ± 3.3
Charge Flip	0.73 ± 0.08	1.1 ± 0.14	negligible
Dibosons	0.79 ± 0.27	1.7 ± 0.5	1.1 ± 0.22
Standard Model	5.0 ± 1.6	17.2 ± 4.4	10.3 ± 3.3
Cosmic Rays	< 10 ⁻³	< 10 ⁻³	< 10 ⁻³
Observed	6	14	5

Main systematics: luminosity, cross section, jet energy scale/resolution, lepton energy scale/resolution

Observed no excess in each channel

Phenomenology 2012, May 5-7, 2012

Direct Gaugino Simplifed Models

- Used CLs method for the limit setting. Visible cross section ($\sigma_{visible}$) upper limit = 14.8 fb.
- Exclusion contour at 95% CL assuming MSSM for the production cross section. Colors represent model-independent observed cross section (σ_{obs}) upper limits at 95% CL.
- <u>The first direct gaugino search in leptonic final states at the LHC</u>
 Hideki Okawa
 Phenomenology 2012, May 5-7, 2012

cf.) ATLAS search in diphoton channel <u>Phys.Lett. B 710 (2012) 519</u>

3-Lepton Search (2 fb⁻¹)

SR1 (Z-veto): 3-lepton (e, μ), E_T^{miss}>50 GeV, SFOS lep Im_{II} - m_Z I > 10 GeV, no b-jets SR2 (Z-enrich): 3-lepton (e, μ), E_T^{miss}>50 GeV, SFOS lep Im_{II} - m_Z I < 10 GeV

Selection	SR1	SR2			
$t\bar{t}W^{(*)}/Z^{(*)}$	$0.4{\pm}0.3$	2.7 ± 2.1			
$ZZ^{(*)}$	$0.7{\pm}0.2$	$3.4{\pm}0.8$			
$WZ^{(*)}$	11 ± 2	58 ± 11			
Reducible Bkg.	14 ± 4	7.5 ± 3.9			
Total Bkg.	26 ± 5	72 ± 12			
Data	32	95			
Observed no excess					

- Diboson & tt+V BG estimated with MC
- Reducible BG corresponds to events coming from fake leptons
- Contributions from fake leptons are estimated using the 4×4 Matrix Method. Leading lepton is always assumed to be real (confirmed with MC studies).
- Photon conversions to muon pair $(I \rightarrow I\gamma^* \rightarrow I\mu\mu)$ from data-driven estimation
 - Rescale number of events with exactly 2 muons by probability of a muon radiating a converted photon producing two muons. Probability is extracted from data.

Phenomenology 2012, May 5-7, 2012

3-Lepton Interpretation (Simplified Models)

- Used CLs. SR1 used for the interpretation. $\sigma_{visible}$ upper limit = 9.9 fb.
- Exclusion contours at 95% CL. Colors represent σ_{obs} upper limits at 95% CL.
- The exclusion limits are significantly extended from the SS 2-lepton search.

Phenomenology 2012, May 5-7, 2012

3-Lepton Interpretation

 $ilde{\chi}_1^\pm$ is excluded up to ~200 GeV in pMSSM

Hideki Okawa

R-Parity Violation

R-Parity Violation

$$W_{RPV} = \lambda_{ijk} L_i L_j \bar{E}_k + \lambda'_{ijk} L_i Q_j \bar{D}_k + \kappa_i L_i H_2 + \lambda''_{ijk} \bar{U}_i \bar{D}_j \bar{D}_k$$

Lepton Number Violation

Baryon Number Violation

i, j, k: fermion generations (=1-3)

- Large constraints on the parameters $(\lambda_{ijk}, \lambda'_{ijk}, \lambda''_{ijk}, \kappa_i)$ from previous experiments and the stability of protons
- LSP is unstable \rightarrow Dark matter could be axion or axino
- RPV-specific phenomenology
 - Single sparticle production/exchange \rightarrow e.g.) e- μ resonance/continuum
 - Unstable LSP → It could be anything; will show the stau-LSP case (w/ multilepton signature) in this talk
- Leptonic channels are highly effective for RPV searches \rightarrow non-zero λ_{ijk} and/or λ'_{ijk}

Hideki Okawa

Phenomenology 2012, May 5-7, 2012

4-Lepton Searches (2 fb⁻¹)

SR1: \geq 4 isolated leptons (e,µ). E_T^{miss}>50 GeV. SR2: SR1 cuts + SFOS lep Im_{II} - m_Z I > 10 GeV

 BG was estimated using the MC, except for the photon conversion BG (Zγ*→IIγ*) estimated from data. BG was validated using the tt-rich & low E_T^{miss} ZZ-rich control regions in data (see extra slides)

	SR1	SR2
tī	0.17±0.14	0.13±0.11
Single <i>t</i>	0±0.04	0±0.04
tīV	0.48±0.21	0.07 ± 0.04
ZZ	0.44±0.19	0.019 ± 0.020
WZ	0.25±0.10	0.09 ± 0.05
WW	0±0.015	0±0.015
Ζγ	0±0.5	0±0.5
Z+(u, d, s jets)	0.33±0.67	0.33±0.67
Z+(c, b jets)	0.024±0.035	0.024±0.035
Drell-Yan	0±0.05	0±0.05
Σ SM	1.7±0.9	0.7±0.8
Data	4	0

No significant deviation is seen for each flavor final state (detailed tables in the extra slides)

RPV Interpretation (≥4-lep)

- Stau-LSP scenario in mSUGRA/
 CMSSM + RPV
- 6 parameters: m_0 , $m_{1/2}$, A_0 , $tan\beta$, sign(μ), λ_{121}
- RPV coupling (λ₁₂₁=0.032): small enough that sparticle pair productions dominate, but <u>large</u> enough to have promptly decaying stau LSPs

- The most dominant process in SR highly depends on $m_{1/2}$ & tan β (see extra slides)
- $m_{1/2} < 800 \text{ GeV}$ excluded for $\tan\beta < 40 \rightarrow m_{gluino} \sim 1.77 \text{ TeV}$ for $m_0=0$, $A_0=0$, $\tan\beta < 40$
- The first RPV search w/ stau LSP at the LHC

e-µ Continuum (2 fb⁻¹)

SR: Opposite-sign e+ μ , e, μ p_T>25 GeV, jet veto (pT>30 GeV, I η I<2.5), m_{e μ}>100 GeV, $\Delta \varphi_{e\mu}$ >3.0 rad, E_T^{miss}<25 GeV

Search for t-channel RPV stop

BG

- Real prompt leptons: (Diboson, Z/γ*→ττ, tt, single top) estimated with MC
- Fake lepton(s): W/Z+jets, multijets were estimated with data-driven method (Matrix Method). MC was used for W/Z+γ.

Observed no excess

Process	Preselection	Final selection
WW	640 ± 50	23.4 ± 3.3
$Z/\gamma^* \to \tau \tau$	1210 ± 110	10 ± 4
Fake Background	290 ± 40	9.6 ± 1.9
WZ	36 ± 4	0.76 ± 0.31
$t\overline{t}$	2800 ± 400	0.25 ± 0.17
Single top	270 ± 40	0.22 ± 0.20
$W/Z + \gamma$	20 ± 7	0.04 ± 0.04
ZZ	4.0 ± 0.4	0.042 ± 0.028
Total background	5300 ± 400	44 ± 6
Data	5387	39

RPV \tilde{t} Interpretation

- Invariant mass of e, μ (m_{e\mu}) is used to set limits on the production cross section of stops.
- Used a modified frequentist approach w/ a binned log-likelihood ratio

For $|\lambda'_{131} \lambda_{231}| = |\lambda'_{132} \lambda_{232}| = 0.05$, stop mass of ~ 200 GeV is excluded Exclusion on PDF-weighted sum of couplings

$$f_{d\bar{d}} \times |\lambda'_{131}\lambda'_{231}|^2 + f_{s\bar{s}} \times |\lambda'_{132}\lambda'_{232}|^2$$

Summary

- Presented the results of supersymmetry searches with leptons with the ATLAS detector using 1-2 fb⁻¹ of 2011 data.
- No excess was observed, so the results were interpreted with various approaches
 - R-parity conserving cases: direct gaugino production in 2 & 3-lepton channels with simplified models & pMSSM
 - R-parity violating cases: stau LSP in ≥4-lep, e-µ resonances (see extra slides), e-µ continuum, binear RPV mSUGRA with 1-lepton (see extra slides)
- Analyses with ~5 fb⁻¹ of 2011 data coming soon, covering a wider range of SUSY scenarios
- 2012 data analyses at $\sqrt{s}=8$ TeV will follow. Stay tuned!

Backups

Object Reconstruction

- Electrons: reconstructed from energy deposit in the electromagnetic (EM) calorimeter & an associated inner detector (ID) track
- Muons: reconstructed by combining ID and muon spectrometer (MS) tracks
- Jets: Reconstructed from calorimeter clusters using anti-kt algorithm with a radius parameter of 0.4
- Missing E_T (E_T^{miss}): Reconstructed from the transverse momenta of the electron & muon candidates, all jets which are not electron candidates, and all calorimeter clusters with lηl<4.5 not associated to electrons/muons/jets.

Lepton Definitions

- 2-lepton channel (1 fb⁻¹):
 - Electron $E_T > 20$ GeV, $I\eta I < 2.47$. p_T -sum of tracks above 1 GeV within $\Delta R < 0.2$ is required to be less than 10% of electron E_T .
 - Muon p_T > 10 GeV, lηl<2.4. p_T-sum of tracks within ΔR<0.2 is required to be less than 1.8 GeV. Impact parameter lz₀l<1 mm, transverse impact parameter ld₀l<0.2 mm.
 - Leading lepton $p_T>25$ GeV (20 GeV) if it is an electron (muon).
- 3-lepton channel (2 fb⁻¹):
 - Electron $E_T > 10$ GeV, $|\eta| < 2.47$. p_T -sum of tracks above 1 GeV within $\Delta R < 0.2$ is required to be less than 10% of electron E_T .
 - Muon $p_T > 10$ GeV, $|\eta| < 2.4$. p_T -sum of tracks within $\Delta R < 0.2$ is required to be less than 1.8 GeV. Transverse impact parameter $|d_0| < 0.2$ mm.
 - Leading lepton $p_T>25$ GeV (20 GeV) if it is an electron (muon).

Lepton Definitions

- \geq 4-lepton channel (2 fb⁻¹):
 - Electron $E_T > 10$ GeV, $|\eta| < 2.47$ (but $E_T > 15$ GeV for 1.37< $|\eta| < 1.52$). p_T-sum of tracks above 1 GeV within $\Delta R < 0.2$ is required to be less than 10% of electron E_T .
 - Muon p_T > 10 GeV, lηl<2.4. p_T-sum of tracks within ΔR<0.2 is required to be less than 1.8 GeV. Total transverse energy in the calorimeter within ΔR<0.3 is required to be less than 4 GeV. Impact parameter lz₀l<1 mm, transverse impact parameter ld₀l<0.2 mm.
 - Leading lepton p_T>25 GeV (20 GeV) if it is an electron (muon).
- eµ-continuum (2 fb⁻¹):
 - Electron $E_T > 25$ GeV, $|\eta| < 2.47$ & muon $p_T > 25$ GeV, $|\eta| < 2.4$.
 - p_T-sum of tracks above 1 GeV within ΔR<0.2 is required to be less than 10% of E_T or p_T. Total transverse energy in the calorimeter within ΔR<0.2 is required to be less than 15% of E_T or p_T.

Lepton Definitions

- 1-lepton channel (1 fb⁻¹):
 - Electron E_T > 25 GeV, IηI<2.47. p_T-sum of tracks above 1 GeV within ΔR<0.2 is required to be less than 10% of electron E_T. Looser electron definition with E_T > 20 GeV was considered for vetoing the second leading electron.
 - Muon p_T > 20 GeV, lηl<2.4. p_T-sum of tracks within ΔR<0.2 is required to be less than 1.8 GeV. Impact parameter lz₀l<5 mm, transverse impact parameter ld₀l<2 mm. Muons without isolation condition with p_T > 10 GeV are considered for vetoing the second leading muon.
- eµ-resonance (1 fb⁻¹):
 - Electron $E_T > 25$ GeV, $|\eta| < 2.47$. Total transverse energy in the calorimeter within $\Delta R < 0.4$ is required to be less than 10 GeV.
 - Muon p_T > 25 GeV, lηl<2.4. p_T-sum of tracks within ΔR<0.4 is required to be less than 10 GeV.

Backups for Direct Gaugino Searches

Direct Gaugino Simplifed Models Acceptance & Efficiency

SS 2-Lepton Search (1 fb⁻¹)

Direct Gaugino Simplifed Models Acceptance & Efficiency

3-Lepton Search (2 fb⁻¹)

Direct Gaugino pMSSM Models Acceptance & Efficiency

3-Lepton Search (2 fb⁻¹)

Backups for R-parity Violation

Bilinear RPV search (1 fb⁻¹) <u>1-Lepton Channel (1 fb⁻¹)</u>

- 1-muon tight 4-jet signal region (4JT) in the ATLAS 1-lepton search is used for bilinear RPV search
- Main BG: W+jets, tt

	Signal Regions			Contro	l Regions	
Selection	3JL	3JT	4JL	4JT	3J	4J
Number of Leptons			:	= 1		
Lepton $p_{\rm T}$ (GeV)		> 25(20) for e	ectrons (m	uons)	
Veto lepton $p_{\rm T}$ (GeV)		> 20(10) for e	ectrons (m	uons)	
Number of jets	≥	3	2	: 4	≥ 3	≥ 4
Leading jet $p_{\rm T}$ (GeV)	60	80	60	60	60	60
Subsequent jets $p_{\rm T}$ (GeV)	25	25	25	40	25	25
$\Delta \phi(\vec{\text{jet}}_i, \vec{E}_{\text{T}}^{\text{miss}})$		[> 0.2	(mod. <i>π</i>)] for all 3 ((4) jets	
$m_{\rm T}~({\rm GeV})$	> 100			40 < n	$n_{\rm T} < 80$	
$E_{\rm T}^{\rm miss}~({\rm GeV})$	> 125	> 240	> 140	> 200	$30 < E_{2}$	$T_{\rm T}^{\rm miss} < 80$
$E_{\rm T}^{\rm miss}/m_{\rm eff}$	> 0.25	> 0.15	> 0.30	> 0.15	-	_
$m_{\rm eff}~({\rm GeV})$	> 500	> 600	> 300	> 500	> 500	> 300

- BG is estimated using data-driven technique
- W & Top control regions are considered for the BG estimation (next slide)

Bilinear RPV search (1 fb⁻¹) <u>1-Lepton Search (1 fb⁻¹)</u>

- W+jets Control Regions (WR): The same lepton & jet requirements as the signal regions. 30 GeV<ET^{miss}<80 GeV, 40 GeV<mT<80 GeV. No b-tagged jets for the 3 or 4 leading ones.
- Top Control Regions (TR): The same requirements as WR except for the b-tag conditions. At least one b-tagged jet in the 3 or 4 leading jets.

Top Control Region in 4JT

Transfer Factor

$$\overline{C_{iR \to SR}^j} = \frac{N_{MC,j}^{SR}}{N_{MC,j}^{iR}}$$

N=number of events iR=WR or TR j=W+jets or Top

Muon channel	4JT Signal region
Observed events	7
Fitted top events Fitted W/Z events Fitted multijet events	$\begin{array}{c} 4.7 \pm 2.2 \ (4.3) \\ 1.4 \pm 1.1 \ (1.4) \\ 0.0 \substack{+0.6 \\ -0.0} \end{array}$
Fitted sum of background events	6.0 ± 2.7

Observed no excess

Hideki Okawa

Bilinear RPV mSUGRA

1-Lepton Search (1 fb⁻¹)

bRPV MSUGRA model

- RPV couplings were embedded in MSUGRA/CMSSM.
- bRPV parameters are determined under tree-level dominance scenario & fit to neutrino oscillation data (Y.Grossman,S.Rakshit, PRD69, 093002 (2004))
- The neutralino LSP's decay to electron is highly suppressed

- The model is not tested for regions where LSP's $c\tau > 15 \text{ mm} (m_{1/2} < 240 \text{ GeV})$
- When $m_{gluino} \sim m_{squark}$, masses below 760 GeV is excluded.

4-Lepton Control Regions (2 fb⁻¹)

- tt-rich control region:
 - Presence of opposite-flavor opposite-sign lepton pair
 - Presence of a b-tagged jet
 - Reversing isolation requirements on two of the four leptons
 - The same E_T^{miss} cut as the signal regions (50 GeV)
- Low E_T^{miss} ZZ-rich control region:
 - Require four leptons
 - $E_T^{miss} < 50 \text{ GeV}$

	МС	Data
tt-rich	8.4 ± 0.8 (stat)	8
ZZ-rich	23 ± 5 (stat+sys)	20

≥4-lepton SR1 for RPV stau-LSP Search

SR1	All	eeee	еееµ	ееµµ	еµµµ	μμμμ
$t\bar{t}$	0.17±0.14	0.011±0.042	0.027 ± 0.042	0.09±0.06	0.05 ± 0.07	0±0.018
Single <i>t</i>	0±0.04	0±0.04	$0{\pm}0.04$	$0{\pm}0.04$	$0{\pm}0.04$	$0{\pm}0.04$
$t\bar{t}V$	0.48±0.21	0.072 ± 0.037	0.12 ± 0.06	0.14 ± 0.07	0.08 ± 0.04	0.059 ± 0.032
ZZ	0.44±0.19	0.14 ± 0.08	0.016 ± 0.012	0.21±0.12	0.047 ± 0.032	0.025 ± 0.045
WZ	0.25±0.10	0.015±0.022	0.07 ± 0.04	0.050 ± 0.032	0.11±0.06	0±0.011
WW	0±0.015	0±0.015	0±0.015	0±0.015	0±0.015	0±0.015
Ζγ	0±0.5	0±0.5	$0{\pm}0.5$	0±0.5	0±0.5	0±0.5
Z+(u, d, s jets)	0.33±0.67	0.33 ± 0.67	0±0.29	0±0.29	0±0.29	0±0.29
Z+(c, b jets)	0.024±0.035	0±0.17	0 ± 0.17	0±0.17	0.024 ± 0.035	0±0.17
Drell-Yan	0±0.05	0±0.05	0 ± 0.017	0±0.017	0±0.016	0±0.017
Σ SM	1.7±0.9	0.6±0.8	0.24 ± 0.57	0.5±0.6	0.32±0.55	0.08 ± 0.57
Data	4	0	1	2	0	1

No significant deviation is seen for each flavor final state

≥4-lepton SR2 for RPV stau-LSP Search

SR2	All	eeee	еееµ	ееµµ	εμμμ	μμμμ
$t\overline{t}$	0.13±0.11	0±0.018	0.027 ± 0.042	0.05 ± 0.04	0.05 ± 0.07	0±0.018
Single <i>t</i>	0±0.04	0±0.04	$0{\pm}0.04$	$0{\pm}0.04$	$0{\pm}0.04$	$0{\pm}0.04$
$t\bar{t}V$	0.07 ± 0.04	0.007 ± 0.007	0.024 ± 0.017	0.022 ± 0.021	0.011 ± 0.008	0.005 ± 0.005
ZZ	0.019±0.020	0.008 ± 0.011	0±0.012	0.010 ± 0.018	0±0.012	0±0.012
WZ	0.09 ± 0.05	0±0.020	0.0021 ± 0.0024	0.050 ± 0.032	0.039 ± 0.028	0 ± 0.011
WW	0±0.015	0±0.015	0±0.015	0±0.015	0±0.015	0±0.015
Ζγ	0±0.5	0±0.5	0±0.5	0±0.5	0±0.5	0±0.5
Z+(u, d, s jets)	0.33±0.67	0.33±0.67	0±0.29	0±0.29	0±0.29	0±0.29
Z+(c, b jets)	0.024±0.035	0±0.17	0±0.17	0±0.17	0.024 ± 0.035	0±0.17
Drell-Yan	0±0.05	0±0.05	$0{\pm}0.017$	0 ± 0.017	0±0.016	0 ± 0.017
ΣSM	0.7±0.8	0.35±0.83	0.05 ± 0.57	0.13±0.57	0.12±0.55	0.005 ± 0.567
Data	0	0	0	0	0	0

No significant deviation is seen for each flavor final state

ATLAS-CONF-2012-001, ATLAS-CONF-2012-035 (2012)

Relative Contribution (≥4-lep RPV stau-LSP Search)

Hideki Okawa

Phenomenology 2012, May 5-7, 2012

e-µ Continuum Plots (2 fb⁻¹)

Phenomenology 2012, May 5-7, 2012

e-µ Resonance (1 fb-1)

Signal region: Opposite-sign e+µ, e,µ p⊤>25 GeV

- Search for high mass neutral particle decaying to two different flavor leptons
- Sensitive to RPV tau sneutrinos & LPV Z'
- Clean signature & low BG

BG

- Real prompt leptons (ttbar, single top, Z/γ*→ττ, diboson) estimated with MC
- Fake lepton(s): W/Z+jets, multijets were estimated with data-driven method (Matrix Method). MC was used for W/Z+γ.

Process	Number of events
tī	1580 ± 170
Jet fake	1175 ± 120
$Z/\gamma^* \rightarrow \tau \tau$	750 ± 60
WW	380 ± 31
Single top	154 ± 16
$W/Z + \gamma$	82 ± 13
WZ	22.4 ± 2.3
ZZ	2.48 ± 0.26
Total background	4145 ± 250
Data	4053

RPV $\tilde{\nu}_{\tau}$ **Interpretation** <u>e-µ Resonance (1 fb⁻¹)</u>

- Search region is basically (m_{stau} -3 σ , m_{stau} +3 σ) except for very high mass region. σ =resolution of invariant mass of e- μ
- For $\lambda'_{311}=0.11$, $\lambda_{312}=0.07$, tau sneutrino of 1.45 TeV mass excluded
- For $\lambda'_{311}=0.10$, $\lambda_{312}=0.05$, tau sneutrino of 1.32 TeV mass excluded
- Exclusion at 95% CL on λ'₃₁₁ as a function of tau sneutrino mass
- Significant improvement on the limits from D0 & 2010 ATLAS results