HADRONIC B DECAYS TO OPEN CHARM @ LHCb

LHCb_Collaboration::Mike_Williams

Department of Physics

Imperial College London

PHENO 2012

May 7th, 2012

< E

The CKM matrix describes all quark flavor-changing processes in the SM.

Amazing progress in the past 10+ years \ldots but still more to learn.

This talk focuses on tree-level determination of γ and alternative ways of measuring other CKM parameters using $B \rightarrow DD'$ decays.

LHCb: FWD spectrometer (2 $< \eta <$ 5) built to study heavy-quark physics.

LHCb has excellent vertex and momentum resolution, PID, μ -ID, etc.

Mike Williams

LHCb, May 2012 3 / 15

LHCb: FWD spectrometer (2 < η < 5) built to study heavy-quark physics.

LHCb has excellent vertex and momentum resolution, PID, μ -ID, etc.

Miko	M/illiame
IVIIKE	vvillatiis

LHCb, May 2012 3 / 1

Use interference b/t $\mathcal{A}_{b\to u}^{\overline{b}\to \overline{u}} = \mathcal{A}_{bu}e^{\pm i\gamma}$ and $\mathcal{A}_{b\to c}^{\overline{b}\to \overline{c}} = \mathcal{A}_{bc}$ to extract γ .

[nb, this equation is slightly oversimplified as it ignores the D-decay amplitudes]

$$\begin{aligned} \mathcal{N}_{\pm} &= |\mathcal{A}_{B^{\pm} \rightarrow D^{0} \mathcal{K}^{\pm}} + \mathcal{A}_{B^{\pm} \rightarrow \bar{D}^{0} \mathcal{K}^{\pm}}|^{2} \\ &= |\mathcal{A}_{D^{0}}|^{2} + |\mathcal{A}_{\bar{D}^{0}}|^{2} + 2|\mathcal{A}_{D^{0}}||\mathcal{A}_{\bar{D}^{0}}|\cos\left(\Delta\theta_{\mathrm{strong}} \pm \gamma\right) \end{aligned}$$

These are tree-level ampltidues; thus, no *pollution* from penguins *etc.* So, what we measure here is really the SM γ .

Mike Williams

LHCb, May 2012 4 / 15

- Reconstruct all $B \to D(hh)h$ mass combinations $(h = \pi, K)$.
 - Multivariate selection designed to suppress combinatoric background.
- Simultaneous fit with 13 free parameters:

3 partial width ratios:
$$R_{K/\pi}^f = \frac{\Gamma(B^+ \to D(f)K) + \Gamma(B^- \to D(f)K)}{\Gamma(B^+ \to D(f)\pi) + \Gamma(B^- \to D(f)\pi)}$$

• 6 *CP* asymmetries:
$$A_h^f = \frac{\Gamma(B^- \to D(f)h) - \Gamma(B^+ \to D(f)h)}{\Gamma(B^- \to D(f)h) + \Gamma(B^+ \to D(f)h)}$$

• 4 charge-separated ADS partial-width ratios: $R_h^{\pm} = \frac{\Gamma(B^{\pm} \to D(K^{\mp}\pi^{\pm})h^{\pm})}{\Gamma(B^{\pm} \to D(K^{\pm}\pi^{\mp})h^{\pm})}$

 $D \rightarrow K\pi$ (favored): $B \rightarrow D\pi$, $B \rightarrow DK$ ($\epsilon_{PID}(K) = 87.6\%$, misID(π) = 3.8%)

As expected, very little CP asymmetry in the favored modes.

As expected, clear *CP* asymmetry in $B \rightarrow DK$ but not $B \rightarrow D\pi$.

As expected, clear *CP* asymmetry in $B \rightarrow DK$ but not $B \rightarrow D\pi$.

 $D \rightarrow K\pi$ (suppressed): $B \rightarrow D\pi$, $B \rightarrow DK$ ($\epsilon_{PID}(K) = 87.6\%$, misID(π) = 3.8%)

First observation of $B \to D(\sup)K$; hint of CPV in $B \to D(\sup)\pi$.

LHCb's results are by far the World's best.

LHCb's results are by far the World's best.

LHCb is on track to measure γ to better than 10° by the end of 2012.

Mike Williams

LHCb, May 2012 10 / 15

These decays are interesting for looking for physics beyond the SM:

- $\phi_s \text{ from } B_s \to D_s D_s$
- sin 2 β from $B_d \rightarrow DD$
- γ (assuming U-spin symmetry)

LHCb Analysis:

- Multi-variate BDT selections for *D* decays trained on $B_{u,d,s} \rightarrow D_{u,d,s} \pi$ data.
- Cross feeds suppressed using PID info and kinematics.
- Systematics largely cancel for modes normalized using the same final state. For different final states systematics still small.

PDG: $\mathcal{B}(B_s \rightarrow D_s D_s) / \mathcal{B}(B_d \rightarrow D_s D) = 1.44 \pm 0.44$.

CDF (new at Lake Louise): $\mathcal{B}(B_s \to D_s D_s) / \mathcal{B}(B_d \to D_s D) = (0.183 \pm 0.021 \pm 0.017) \cdot (f_s / f_d)$ = 0.685 ± 0.079 ± 0.074

First observation of $B_s \rightarrow D_s D$ @ 10.1 σ

 $\mathcal{B}(B_s \to D_s D) / \mathcal{B}(B_d \to D_s D) = 0.048 \pm 0.008(\text{stat}) \pm 0.004(\text{syst})$ Expect: $\mathcal{B}(B_s \to D_s D) / \mathcal{B}(B_d \to D_s D) \approx \frac{|V_{cd}|^2}{|V_{cs}|^2} \sim 0.051$

イロト 不得下 イヨト イヨト 二日

 $\mathcal{B}(B_s \to DD) / \mathcal{B}(B_d \to DD) = 1.00 \pm 0.18 \pm 0.09 \ @ \ 10.7\sigma$ $\mathcal{B}(B_s \to D^0 \bar{D}^0) / \mathcal{B}(B \to D^0 D_s) = 0.015 \pm 0.004 \pm 0.001 \ @ \ 5.4\sigma$

 $B_d \to D^0 \bar{D}^0 \text{ is } 2.1\sigma$

- LHC*b* performed great in 2011 and collected just over 1 fb⁻¹ of data.
- Many more interesting B to open charm results using 2011 data will be ready for this summer.
- We expect to collect about 1.5 fb⁻¹ in 2012. Thus, results produced using the full 2011+2012 data will have about 2.5× the stats of the results shown today.
- Stay tuned!