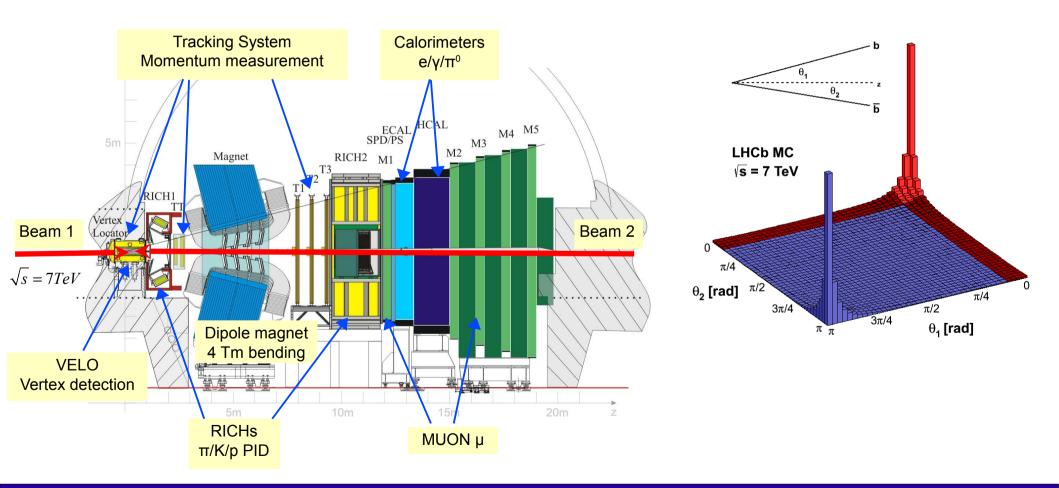
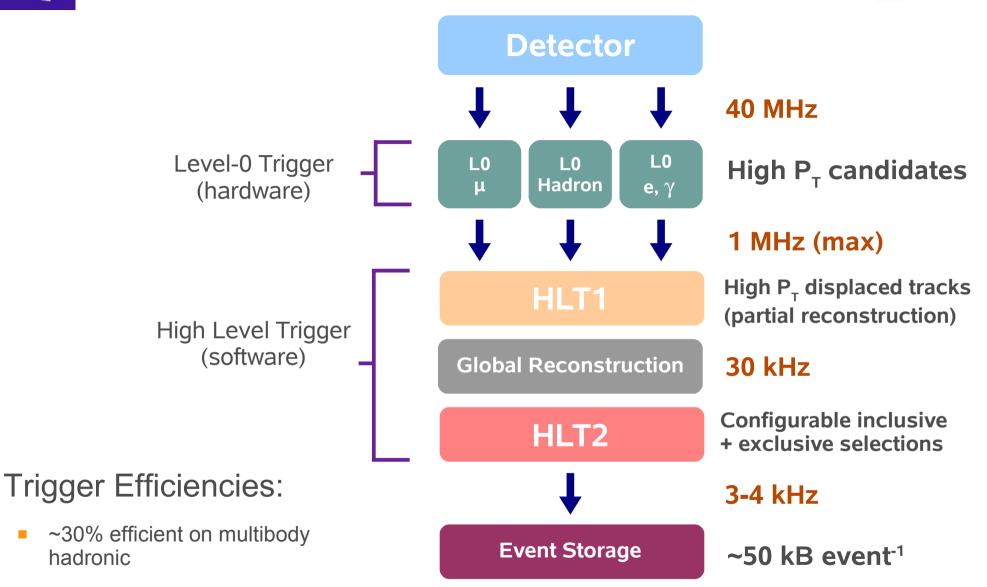


Hadronic Charmless B Decays

David Dossett – University of Warwick


On behalf of the LHCb Collaboration

The LHCb Experiment


- B hadron (and charm) production occurs in the very forward or backward regions.
- Single arm spectrometer in the forward (positive z) region.

LHCb Trigger + Data Acquisition

~90% efficient for dimuons

Recorded ~1fb-1 in 2011

Charmless Charged 2-Body Decays B_{d,s}→h⁺h⁻

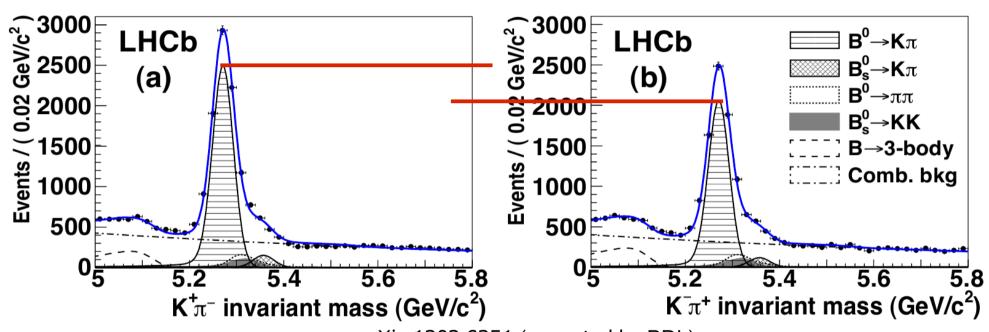
 Several different diagrams contribute to each decay amplitude, including...

- Tree (T)
- Strong and Electroweak
 Penguin (P,P^C_{FW})
- Penguin Annihilation (PA)
- Exchange (E)

Decay mode	Contributing diagrams
$B^0 o \pi^+\pi^-$	T, P, PA, P_{EW}^C, E
$B^0 o K^+\pi^-$	T, P, P_{EW}^C
$B_s^0 o \pi^+ K^-$	T, P, P_{EW}^C
$B_s^0 o K^+K^-$	T, P, PA, P_{EW}^C, E
$B^0 o K^+K^-$	PA,E
$B_s^0 o \pi^+\pi^-$	PA, E

 Gives test of U-spin symmetry (d ↔ s) since in the case of negligible annihilation contributions for Kπ modes

$$A_{\pi\pi}^{dir} \approx A_{CP} (B_s \rightarrow \pi K)$$
 $A_{KK}^{dir} \approx A_{CP} (B^0 \rightarrow K\pi)$



Direct CP Asymmetry in $B^0 \rightarrow K\pi$

$$\int Ldt = 0.35 \, fb^{-1}$$

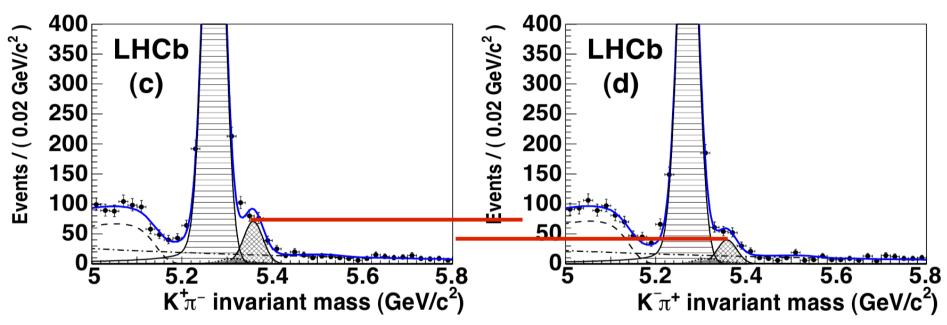
~13000 candidates

arXiv:1202.6251 (accepted by PRL)

$$A_{CP}(B^0 \to K\pi) = -0.088 \pm 0.011 \text{ (stat)} \pm 0.008 \text{ (syst)}$$

World's most precise measurement (>6σ)

In agreement with HFAG world average:


$$A_{CP}^{HFAG}(B^0 \rightarrow K\pi) = -0.098^{+0.012}_{-0.011}$$

Direct CP Asymmetry in $B_s \rightarrow K\pi$

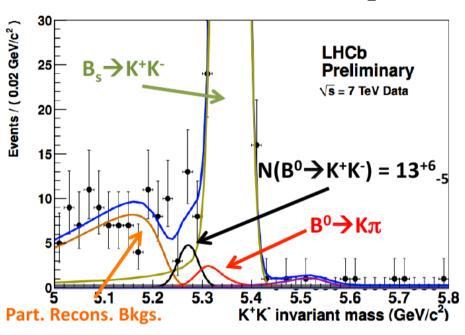
arXiv:1202.6251 (accepted by PRL)

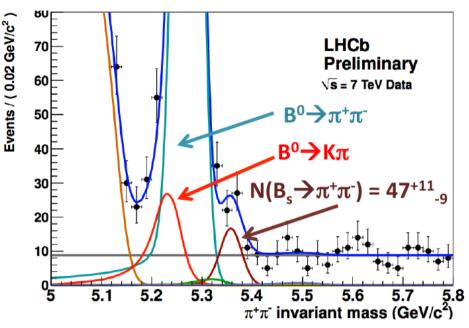
LHCb:
$$A_{CP}(B_s^0 \to K\pi) = 0.27 \pm 0.08 \, (\mathrm{stat}) \pm 0.02 \, (\mathrm{syst})$$

CDF: $A_{CP}(B_s^0 \to K^- \pi^+) = +0.39 \pm 0.15(\text{stat}) \pm 0.08(\text{syst})$

[Phys. Rev. Lett. 106 (2011) 181802]

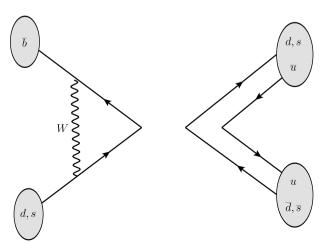
First evidence of direct CP violation in B_s system (3.3 σ)




Annihilation Diagrams

LHCb-CONF-2011-042

$$\int Ldt = 0.32 fb^{-1}$$

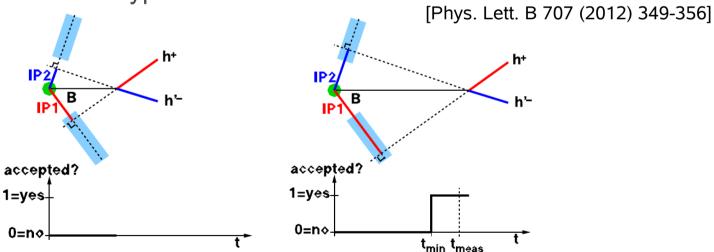


$$\mathcal{BR}(B^0 \to K^+ K^-) = (0.13^{+0.06}_{-0.05} \pm 0.07) \times 10^{-6}$$

LHCb Preliminary

$$\mathcal{BR}(B_s^0 \to \pi^+\pi^-) = (0.98^{+0.23}_{-0.19} \pm 0.11) \times 10^{-6}.$$

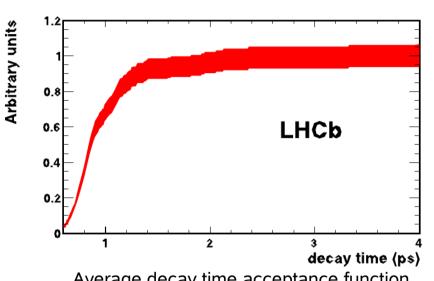
First observation of $B_s \rightarrow \pi^+ \pi^- (5.3\sigma)$


Effective B_s→K⁺K⁻ Lifetime

Untagged decay time distribution given by

$$\Gamma(t) \propto (1 - A_{\Delta \Gamma_s})e^{-\Gamma_L t} + (1 + A_{\Delta \Gamma_s})e^{-\Gamma_H t}$$
 $A_{\Delta \Gamma_s} = 0.97^{+0.014}_{-0.009}$

- Selecting the events causes a lifetime bias. Two methods used to correct for it.
 - 1) Correct event by event using an acceptance function from rerunning software trigger+selection for all hypothetical lifetimes.


2) Measure the lifetime relative to the kinematically similar decay $B^0 \to K\pi$ to cancel the acceptance bias.

Effective B_s→K⁺K⁻ Lifetime

Results quoted from the absolute lifetime measurement.

[Phys. Lett. B 707 (2012) 349-356]

Data
Fit
B_s→K⁺K⁻
Background

LHCb

L+Cb

L ≈ 37pb⁻¹

decay time (ps)

Average decay time acceptance function with statistical uncertainty.

Fitted decay time distribution for $B_s \to K^+K^-$.

$$\tau_{KK} = 1.440 \pm 0.096 \text{ (stat)} \pm 0.008 \text{ (syst)} \pm 0.003 \text{ (model) ps}$$

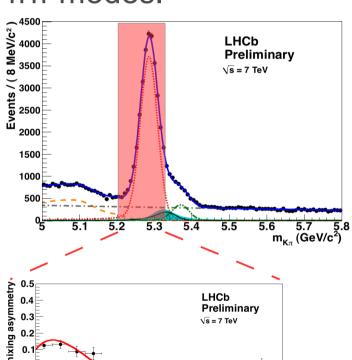
CDF preliminary

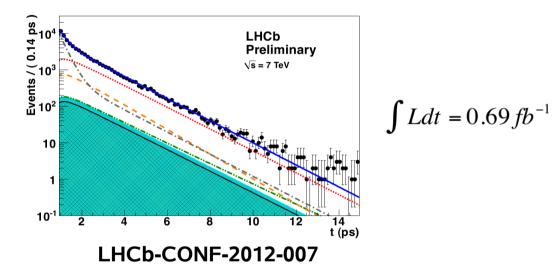
$$\tau_{KK} = 1.53 \pm 0.18 \text{ (stat)} \pm 0.02 \text{ (syst) } ps$$

CDF note 06-01-26

SM prediction

$$\tau_{KK} = 1.390 \pm 0.032 \text{ ps}$$

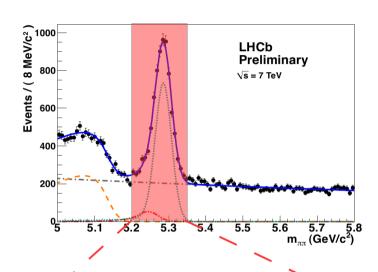

Results are consistent with SM prediction.

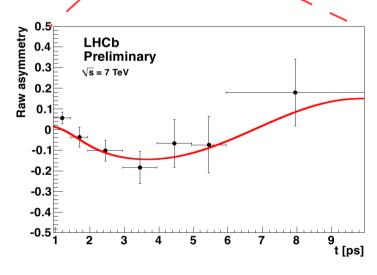


Time Dependent B⁰→Kπ Fit

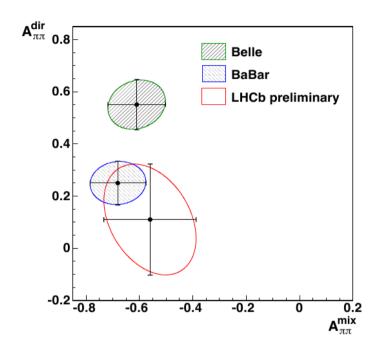
- Need to determine the production flavour of the b quark before oscillation → Tagged analysis
- Kπ mode used to determine tagging performance for the KK and ππ modes.

 Asymmetric mass window used to exclude the fast oscillating B_s.


-0.1



Time Dependent CP Violation in $B^0 \to \pi^+\pi^-$



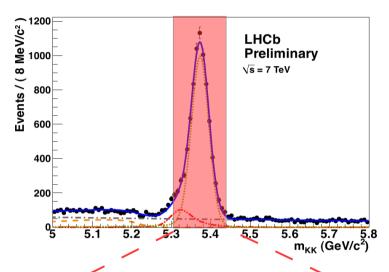
$$\int Ldt = 0.69 \, fb^{-1}$$

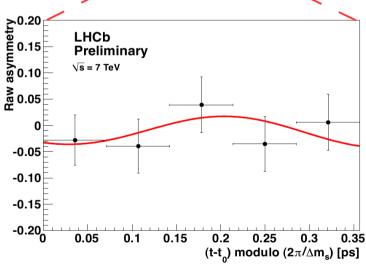
LHCb-CONF-2012-007

$$A_{\pi\pi}^{\text{dir}} = 0.11 \pm 0.21 \pm 0.03$$

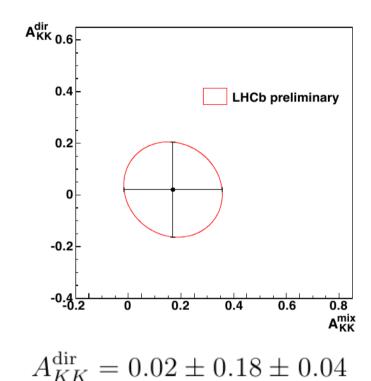
 $A_{\pi\pi}^{\text{mix}} = -0.56 \pm 0.17 \pm 0.03$

LHCb Preliminary


- Results compatible with previous measurements.
- First evidence of mixing induced CP violation at a hadron collider (3.2σ)



LHCD Time Dependent CP Violation in B_c→K⁺K⁻



$$\int Ldt = 0.69 \, fb^{-1}$$

LHCb-CONF-2012-007

 $A_{KK}^{\text{mix}} = 0.17 \pm 0.18 \pm 0.05$

First measurement of B_s→K⁺K⁻ time dependent CP asymmetries.

LHCb Preliminary

Conclusions

- World's most precise measurement of direct CP asymmetry in $B^0 \to K^+\pi^-$ and first evidence of direct CP asymmetry in the B_s sector.
- First observation of $B_s \to \pi^+\pi^-$ (5.3σ).
- Measurement of the B_s → K⁺K⁻ effective lifetime.
- Measurement of time dependent CP asymmetry in B⁰ → $\pi^+\pi^-$ and first measurement of time dependent CP asymmetry in B_s → K⁺K⁻.

- Vector analyses $B_s \to K^{0*}K^{0*}$ [Phys. Lett. B 709 (2012) 50-58] and $B_s \to \phi \phi$ [arXiv:1204.2813] not discussed here but are important results.
- Updating measurements with the full 2011 dataset.
- 3-body mode analyses are also coming soon/available.
- Expecting ~1.5fb⁻¹ of 8TeV data in 2012.