Phenomenology 2012 Symposium Pittsburgh, May 7-9, 2012

Heavy Flavor Production and Spectroscopy

(For The LHCb Collaboration)

Jianchun Wang Syracuse University

The LHCb Forward Spectrometer

05/07/2012

- The LHCb detector is a forward spectrometer designed for CP violation and rare decays of b- or c- hadrons.
- > Large heavy flavor production cross section in forward region (2< η <5).
 - $\sigma(c\bar{c})_{LHCb} = 1742\pm267 \ \mu b$ (LHCb-CONF-2010-013)
 - ♦ $\sigma(b\overline{b})_{LHCb} = 75.3 \pm 5.4 \pm 13.0 \ \mu b$ (Phys.Lett.B 694 (2010), 209)
- LHCb experiment accumulated ~1 fb⁻¹ of data in pp collisions at 7 TeV, collected a sample rich in b- and c- hadrons.
- Measurements of heavy quark hadron production probe the dynamics of the colliding partons, and provide tests to different perturbative or non-perturbative QCD models.
- Copious heavy flavor hadron sample, large boost and forward coverage make LHCb unique in these studies.

- ➢ Reconstructed in ψ(2S) → μ⁺μ⁻, J/ψ(μ⁺μ⁻)π⁺π⁻, two modes averaged.
- Pseudo decay time to separate prompt ψ(2S) from b-decayed products.

 $\sigma_{\text{prompt}}(\psi(2S)) = 1.44 \pm 0.01 \text{ (stat)} \pm 0.12 \text{ (syst)}^{+0.20}_{-0.40} \text{ (pol)} \ \mu\text{b}$

- Prompt ψ(2S) has negligible feed down from higher mass charmonia. Thus the production cross section can be directly compared with QCD prediction of direct production.
- The spectrum agrees with NRQCD predictions (arXiv:hep-ph/1012.1030, PRL 106 (2011) 022003, PRL 101 (2008) 152001, EPJ C61 (2009) 693).

 $\sigma_b(\psi(2S)) = 0.25 \pm 0.01 \text{ (stat)} \pm 0.02 \text{ (syst)} \ \mu\text{b.}$

- QCD prediction is based on FONLL approximation that was for bb production (*JHEP 9805 (1998) 007, JHEP* 0407 (2004) 033), consistent with the measurements.
- > Combining with LHCb J/ ψ measurement,

 $\mathcal{B}(b \to \psi(2S)X) = (2.73 \pm 0.06 \text{ (stat)} \pm 0.16 \text{ (syst)} \pm 0.24 \text{ (BF)}) \times 10^{-3}$

 $\mathcal{B}(b \to \psi(2S)X) = (3.08 \pm 0.12(stat \oplus sys) \pm 0.13(the) \pm 0.42(BF)) \times 10^{-3}$ CMS, JHEP 02 (2011) 11

10

5

15 p_ (GeV/c)

- Reconstructed in $\chi_{c0,1,2} \rightarrow J/\psi(\mu^+\mu^-) \gamma$. Psudo decay time $t_z < 0.1$ ps to suppress b-decay products.
- Converted or non-converted photon reconstructed at calorimeter.
- The combined χ_c differential cross section ratio over J/ ψ is measured.
- Agree with CDF (*PRL 79 (1997) 578*), but different trend.
- Described well by NLO NRQCD (PRD 83 (2011) 111503), not by ChiGen (projects.hepforge.org/superchic/chigen.html).
- Converted photon is reconstructed from two e tracks.
- Lower efficiency but better separation between χ_{c1} and χ_{c2} to measure the ratio of two production cross section.
- The measurements are consistent, and agree with both predictions with large uncertainty.

• Reconstruct $\Upsilon(nS) \rightarrow \mu^+\mu^-$ modes for n=1,2,3.

 $\begin{aligned} \sigma(pp \to \Upsilon(1S) X) \times \mathcal{B}(\Upsilon(1S) \to \mu^+\mu^-) &= 2.29 \pm 0.01 \pm 0.10 \stackrel{+0.19}{_{-0.37}} \text{ nb} \\ \sigma(pp \to \Upsilon(2S) X) \times \mathcal{B}(\Upsilon(2S) \to \mu^+\mu^-) &= 0.562 \pm 0.007 \pm 0.023 \stackrel{+0.048}{_{-0.092}} \text{ nb} \\ \sigma(pp \to \Upsilon(3S) X) \times \mathcal{B}(\Upsilon(3S) \to \mu^+\mu^-) &= 0.283 \pm 0.005 \pm 0.012 \stackrel{+0.025}{_{-0.048}} \text{ nb} \end{aligned}$

- QCD calculations are more robust due to heavier bottom quark mass.
- P_T spectra agree with theoretical predictions (arXiv:0806.1013, EPJ C61 (2009) 693, PRL 106 (2011) 042002)
- The differential production ratio of Υ(2S) and Υ(3S) over Υ(1S) agree with recent CMS measurements.
- The measurement is in pipeline for the 2012 data.

X(3872) & X(4140)

- X(3872) was first observed by Belle (PRL 91 (2003) 262001).
- ➢ Its quantum numbers are constrained to J^{pc} = 2⁻⁺, 1⁺⁺ by CDF (*PRL 98 (2007) 13202*). The nature is unclear: cc, D^{*0}D⁰ molecule, tetraquark state.
- Measured mass agree with current world average

 $\begin{array}{l} M_{X(3872)} = 3871.95 \pm 0.48 \pm 0.12 \ \text{MeV/c}^2 \\ \sigma_{X(3872)} \ \mathcal{B} \left(X(3872) {\rightarrow} \text{J/}\psi \pi^+ \pi^- \right) = 4.7 \pm 1.1 \pm 0.7 \ \text{nb} \end{array}$

NRQCD model predicts 13.0 ± 2.7 nb for cc production, 2.8σ higher (*PRD 81 (2010) 114018*).

370 pb⁻¹ [LHCB-PAPER-2011-033]

- CDF (<u>arXiv:1101.6058</u>) reported a 5σ narrow J/ $\psi\phi$ structure at ~4143 MeV/c², in 115±12 B⁺ \rightarrow J/ $\psi\phi$ K⁺ samples: N=19±6.
- ► LHCb reconstructed 346±12 B⁺ \rightarrow J/ $\psi\phi$ K⁺ signals with little bkg. No X(4140) signal found, 2.4 σ disagreement with CDF.

$$\frac{\mathcal{B}(B^+ \to X(4140)K^+) \times \mathcal{B}(X(4140) \to J/\psi \, \phi)}{\mathcal{B}(B^+ \to J/\psi \, \phi K^+)} < 0.07 \quad \text{at 90\% C.L.}$$

- > Measure production rate of $J/\psi C$, CC, C \overline{C} (C = D⁰, D⁺, D_s⁺, Λ_c^+) from pp collisions.
- Production mechanisms:
 - Gluon fusion (gg \rightarrow J/ ψ J/ ψ , J/ ψ cc, cccc), agree with the LHCb J/ ψ pair production measurement (*PLB 707 (2012) 52*).
 - Intrinsic charm (IC) content of proton (*PLB 93 (1980) 451*). Prediction has large uncertainty.
 - Double parton scattering (DPS): two independent scattering processes. Effective cross section from Tevatron ~14.5 mb. (*PRL 107 082002, PLB 705 116, arXiv:1106.2184, arXiv:1111.3255*)
- > Observe no significant azimuthal or rapidity correlation within each pair.

 \triangleright

 \geq

- B_c^+ was discovered in $B_c^+ \rightarrow J/\psi Iv X$ mode by CDF.
- > The only exclusive mode observed before: $B_c^+ \rightarrow J/\psi \pi^+$.
 - LHCb measures its mass in J/ $\psi \pi^+$ mode $M(B_c^+) = 6268.0 \pm 4.0 \pm 0.6 \text{ MeV}/c^2$ preliminary

(compare to world average $6277\pm 6 \text{ MeV/c}^2$).

- 0.8 fb⁻¹ [LHCB-PAPER-2011-044] Events / 10 MeV LHCb $J/\psi\pi^+\pi^-\pi^+$ N=135±14 ╟╣╙═╟╼╓┍┺┲┙ $J/\psi \pi^+$ 60 H N=414±25 APPlachalic Contraction 6000 6200 6400 6600 5800 6800 M(J/ψπ⁺[π⁻π⁺]) [MeV]
- For P_T(B)>4GeV, 2.5 <η< 4.5, the production cross section rate is measured (33 pb⁻¹, preliminary, LHCB-CONF-2011-017)

$$R_{c+} = \frac{\sigma(B_c^+) \times \mathcal{B}(B_c^+ \to J/\psi\pi^+)}{\sigma(B^+) \times \mathcal{B}(B^+ \to J/\psi K^+)} = (2.2 \pm 0.8 \pm 0.2)\%,$$

- > LHCb has first observation of $B_c^+ \rightarrow J/\psi \pi^+ \pi^-$ mode.
- > The relative BR is measured

 $\frac{\mathcal{B}(B_c^+ \to J/\psi \,\pi^+ \pi^- \pi^+)}{\mathcal{B}(B_c^+ \to J/\psi \,\pi^+)} = 2.41 \pm 0.30 \pm 0.33$

consistent with theoretical predictions (*PRD81 (2010*) 014015)

Observations of B_(s)** Mesons

336 pb⁻¹ [LHCB-CONF-2011-053]

- The properties of the excited B_(s)** Mesons predicted by HQET.
- Some of these states were found at Tevatron.
- > LHCb searches in $B^{+/0}h^{-}$ channels: $B^{+}K^{-}$, $B^{+}\pi^{-}$, $B^{0}\pi^{-}$.
- Photon from B^{*}→Bγ is not reconstructed, resulting in shifted peak in Q distribution.
- No direct determination of quantum numbers, matching to expected states from HQET.

> First observation of the orbitally excited B_1^+ and B_2^{*+}

$$\begin{split} M_{B_{s1}^0} &= (5828.99 \pm 0.08_{\rm stat} \pm 0.13_{\rm syst} \pm 0.45_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^2 \,, \\ M_{B_{s2}^{*0}} &= (5839.67 \pm 0.13_{\rm stat} \pm 0.17_{\rm syst} \pm 0.29_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^2 \,, \\ M_{B_1^0} &= (5724.1 \pm 1.7_{\rm stat} \pm 2.0_{\rm syst} \pm 0.5_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^2 \,, \\ M_{B_1^+} &= (5726.3 \pm 1.9_{\rm stat} \pm 3.0_{\rm syst} \pm 0.5_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^2 \,, \\ M_{B_2^{*0}} &= (5738.6 \pm 1.2_{\rm stat} \pm 1.2_{\rm syst} \pm 0.3_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^2 \,, \\ M_{B_2^{*+}} &= (5739.0 \pm 3.3_{\rm stat} \pm 1.6_{\rm syst} \pm 0.3_{\rm syst}^{B\,{\rm mass}}) \ {\rm MeV}/c^2 \,, \\ \end{split}$$

Bottom Baryons (I)

LHCb observed 4 of the seven ground state b-Baryons.

> Λ is observed in several channels. It is mass is measured in J/ ψ Λ mode:

 $M(\Lambda_b^0) = 5619.19 \pm 0.70 \pm 0.30 MeV$

consistent with the current world average value 5620.2±1.6 MeV with better precision.

- > $\Xi_b^{\ 0}$ is observed in D⁰pK⁻ mode with 2.6 σ significance: $M(\Xi_b^0) = 5802.0 \pm 5.5 \pm 1.7 MeV$ preliminary
- The value is consistent with CDF measurement: 5785.8±5.0±1.3 MeV (PRL 107, 102001 (2011))

0.33 fb⁻¹ [LHCB-CONF-2011-036]

 $\Xi_h^0 \rightarrow D^0 p K^-$

 $N = 26.9 \pm 10.0$

05/07/2012

Bottom Baryons (II)

0.62 fb⁻¹ [LHCB-CONF-2011-060]

 \succ LHCb observed Ξ_{b}^{-} and Ω_{b}^{-} in modes

$$\Xi_b^- \to J/\psi \Xi^-, \Xi^- \to \Lambda^0 \pi^-$$

$$\Omega_b^- o J \,/\, \psi \, \Omega^-, \, \Omega^- o \Lambda^0 K^-$$

where $J/\psi \rightarrow \mu^+\mu^-$ and $\Lambda^0 \rightarrow p\pi^-$.

> Their masses are measured

$$M(\Xi_b^-) = 5796.5 \pm 1.2 \pm 1.2 MeV$$
$$M(\Omega_b^-) = 6050.3 \pm 4.5 \pm 2.2 MeV$$

- LHCb ±⁻_b mass measurement is consistent with CDF
 & D0 with better precision.
- > LHCb Ω_{b}^{-} mass has better precision.
- > Ω_{b}^{-} mass values measured by CDF & D0 differ by ~110 MeV. The LHCb measured mass agrees with the CDF value.

	$M(\Xi_b^-)$	$M(\Omega_b^-)$	
DØ	5774 ± 19	6165 ± 16	— PRL 101, 232002 (2008)
CDF	5790.9 ± 2.7	6054.4 ± 6.9	— PRD 80, 072003 (2009)
PDG	5790.5 ± 2.7	6071 ± 40	
LHCb	5796.5 ± 1.7	6050.3 ± 5.0	

- The LHCb detector is in good shape and performs well.
- LHCb have collected ~1 fb⁻¹ data at 7 TeV.
- ✤ In year 2012, ~1.5fb⁻¹ data at 8 TeV is expected.
- Many interesting heavy flavor hadron results are produced including
 - Prompt $\psi(2S)$ production and production from b-decays.
 - Prompt χ_{cj} production.
 - Υ(nS) production.
 - Double charm production.
 - Search for X(3872) & X(4140) from b-decays.
 - B_c⁺ mass and production, first observation of B_c⁺ \rightarrow J/ ψ $\pi^{+}\pi^{-}$ mode.
 - First observation of B_1^+ and B_2^{*+} states, mass measurements of $B_{(s)}^{**}$ states.
 - Best or compatible mass measurements: Λ_b^0 , Ξ_b^0 , Ξ_b^- , Ω_b^- .
- More new measurements or updates with more data are coming.