Search for New Physics with rare leptonic decays of B_(s) and D mesons

Phenomenology 2012 Symposium University of Pittsburgh (USA)

May 7th, 2012 **Xabier Cid Vidal**

Universidade de Santiago de Compostela (Spain), on behalf of the LHCb collaboration

USU SC UNIVERSIDADE DE SANTIAGO DE COMPOSTELA

Outline

Introduction

LHCb rare leptonic decays results

- $B_{d,s} \rightarrow \mu^+ \mu^-$
- $B_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
- Searches for Majorana neutrinos in B^\pm decays
- $\ D^0 \rightarrow \mu^+ \mu^{\scriptscriptstyle -}$

Conclusions

Introduction

LHCb overview

May 7th, 2012

Xabier Cid Vidal – Search for New Physics with rare leptonic decays

LHCb overview

May 7th, 2012

Xabier Cid Vidal – Search for New Physics with rare leptonic decays

Introduction

- General concept of rare leptonic leptonic decays in LHCb:
 - Access NP through new virtual particles entering in the loop: indirect search of NP, accessing higher energy scales!
 - Very relevant test of SM predictions, for extremely small BR.
- Searches are experimentally similar:
 - **Control channels** used to avoid dependence on simulation.
 - Use of normalization channels (with similar geometry/trigger) to convert observed number of events in BR, reduces systematic errors!
 - **Geometrical properties** combined in MVA to classify the events.
 - Good particle ID (muon) and low pion/kaon misID needed!
 - Blind analyses (signal region not looked at until the analyses are frozen)

6/22

LHCb rare leptonic decays results

$B_{d,s} \rightarrow \mu^+ \mu^-$ - Introduction

- $B_{d,s} \rightarrow \mu^+ \mu^-$ decays are very supressed in the SM:
 - BR($B_s \rightarrow \mu\mu$) = (3.2 ± 0.2) x 10⁻⁹
 - BR $(B_d \rightarrow \mu\mu)$ = (0.10 ± 0.01) x 10⁻⁹

A. J. Buras, M. V. Carlucci, S. Gori, and G. Isidori, JHEP 1010, 2010 A. J. Buras, Phys. Polon. B41, 2010

8/22

They turn out to be, however, very sensitive to scalar and pseudo-scalar operators, so sensitive to NP.

SM, NP

$B_{d,s} \rightarrow \mu^+ \mu^-$ - Analysis overview (I)

- Selection: apply some cuts on all µµ candidates to remove most of the background.
- Classify each event using two variables (bins in a 2D parameter space):
 - Invariant Mass
 - Geometrical properties

 (combined in Boosted Decision Tree)
 - Separation of the candidate and daughters from the primary vertex
 - **Isolation** of the candidate and daughters
 - **p**_T of the candidate and daughters
 - Quality of the B vertex

- BDT trained with MC, estimated with data:
 - Signal, $B \rightarrow hh$ trigger unbias
 - Background: $B_{d,s} \rightarrow \mu \mu$ sidebands

/ 9/22

 Signal uniformly distributed, background peaking at 0

$B_{d,s} \rightarrow \mu^+ \mu^- - Analysis$ overview (II)

 Treat each bin in 2D space (mass, BDT) as an independent experiment. Results combined using CL_s method (Modified Frequentist Approach)

see T. Junk NIM A434, 435,1999

/10/22

- Use of control channels:
 - to calibrate: signal BDT with $B \rightarrow hh$, mass resolution with dimuon resonances (J/ ψ , ψ (2S),Y), muonID and trigger efficiencies with $B^+ \rightarrow J/\psi K^+$, ...
 - and normalize: $B^+ \rightarrow J/\psi K^+$, $B_d \rightarrow K\pi$ and $B_s \rightarrow J/\psi \Phi$, give compatible results)

$B_{d,s} \rightarrow \mu^+ \mu^- - Mass$ projections

Results in **1 fb⁻¹** consistent with SM

Data

Error in sum of all expected contributions (hatched area)

Results in most sensitive region of BDT

Events per 24 MeV/c² Events per 24 MeV/c BDT>0.5 BDT>0.5 $B^0 \rightarrow \mu\mu$ B⁰₅→µµ LHCb LHCb 2 0 5250 5300 5350 5400 $m_{\mu\mu}$ (MeV/c²) m_{µµ}(MeV/c²)

May 7th, 2012

Xabier Cid Vidal – Search for New Physics with rare leptonic decays

SM signal

channels

Combinatorial bkg.

Crossfeed between

/11/22

 $B_{d,s} \rightarrow h^+h^- misID$

$B_{d,s} \rightarrow \mu^+\mu^-$ - Results

May 7th, 2012

Xabier Cid Vidal – Search for New Physics with rare leptonic decays

$B_{d,s} \rightarrow \mu^+ \mu^-$ - Limits summary

Adapted from H. Miyake, La Thuile, 29 Feb 2012

/13/22

$B_{d,s} \rightarrow \mu^+ \mu^-$ - Limits summary

Adapted from H. Miyake, La Thuile, 29 Feb 2012

/14/22

$B_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^- - Overview$

- B to four muons decays are strongly suppressed in the SM.
 - Largest contribution from $B_s \rightarrow J/\psi(\mu^+\mu^-)\Phi(\mu^+\mu^-)$ with expected BR at the level of (2.3±0.9) x 10⁻⁸. Observed yield consistent with expectation.

■ Non resonant process also possible in SM: $B_{d,s} \rightarrow \mu^+\mu^-$

- γ^* with $\gamma^* \rightarrow \mu^+ \mu^-$
 - BR predicted to be 10^{-10} 10^{-11}
- D. Melikhov and N. Nikitin, Phys. Rev. D 70, D. Melikhov, et al., Phys. At. Nucl. 68

/15/22

- Decay sensitive to NP, e.g., sGoldstinos $(B_s \rightarrow S(\mu^+\mu^-)P(\mu^+\mu^-))$
- Cut based analysis:
 - Vetos in the J/ ψ and Φ mass. PID. Separation between B vertex and primary vertices. Quality of B vertex.
 - Normalization to $B_d \rightarrow J/\psi K^*$

$B_{d,s} \rightarrow \mu^+ \mu^- \mu^+ \mu^- - Results$

- Number of observed events in 1 fb⁻¹ consistent with background expectation
- Set a limit on signal events using the CL_s method (as in $B_s \rightarrow \mu^+\mu^-$)

/16/22

Limits @ 95% CL (first world limits on these decays)

$$\begin{array}{c|c} - & BR(B_s \rightarrow \mu^+ \mu^- \mu^+ \mu^-) < 1.3 \times 10^{-8} \\ - & BR(B_d \rightarrow \mu^+ \mu^- \mu^+ \mu^-) < 5.4 \times 10^{-9} \end{array}$$

```
LHCb-CONF-2012-010
```

Searches for Majorana neutrinos in B[±] decays

B⁻ → D⁺µ⁻µ⁻ and B⁺ → D^{*+}µ⁻µ⁻ can arise from the presence of virtual Majorana neutrinos of any mass. Other states containing π⁺, D⁺_s, or D⁰π⁺ can be mediated by an on-shell Majorana neutrino

e.g. Majorana neutrino mediated $B^- \rightarrow \pi^+(D_s^+)\mu^-\mu^-$

No signal found in the searched channels in 0.41 fb⁻¹

arXiv:1201.5600

■ B⁻ → $\pi^+\mu^-\mu^-$ has been used to establish neutrino mass dependent upper limits on the coupling $|V_{\mu4}|$ of a heavy Majorana neutrino to a muon and a virtual W.

$D^0 \rightarrow \mu^+\mu^-$ - Introduction

■ In the SM, BF dominated by Long Distance contributions: $\mathcal{B}(D^0 \to \mu^+ \mu^-) \simeq 2.7 \times 10^{-5} \mathcal{B}(D^0 \to \gamma \gamma)$

G. Burdman et al. arXiv:hep-ph/0112235

/18/22

- But enhancement likely in several NP models:
 - e.g. BR~10⁻⁹ with RPV-SUSY tree level transitions

 Best experimental upper limit up to now by Belle, with 660 fb⁻¹, at 90% CL

$$\mathcal{B}\left(D^0 \to \mu^+ \mu^-\right) < 1.4 \times 10^{-7} \qquad \qquad \begin{array}{c} \text{Petric \& al,} \\ \text{arXiv:1003.2345} \end{array}$$

$D^0 \rightarrow \mu^+\mu^-$ - Analysis overview

- Normalization to $D^0 \rightarrow \pi^+\pi^-$
- Low π-μ misID rate(<1%)</p>
 - Keep $D^0 \rightarrow \pi^+\pi^-$ double misID low although B($\pi\pi$)/B($\mu\mu$)>10⁵
- Large X-sections: σ(D*+)= (676 ± 137) μb LHCb-CONF-2010-013
 - Can use D* and still have large yields

- D*- D⁰ mass difference in $D^0 \rightarrow \pi^+\pi^-$ (used for normalization)
- Easy to have large control samples: D→Kπ for (efficiency and misID rate), J/Ψ(µµ) (trigger and muID efficiency).

$D^0 \rightarrow \mu^+\mu^-$ - Results

Fit with 0.9 fb⁻¹ done with different components

- Comb. background: Reduced by Boosted Decay Tree (p_T + topology). - - -
- Peaking backgrounds ($D^0 \rightarrow \pi^+\pi^-$) - - -
- "µµ signal" _

(compatible with 0)

Observed number of events compatible with background:

- Limit set using again CL_s method BR($D^0 \rightarrow \mu^+\mu^-$) < 1.3 x 10⁻⁸, at 95% CL LHCb-CONF-2012-005
- Factor 10 better than Belle
- Expect 90% CL limit around 5×10^{-9} in the coming years.

May 7th, 2012

Xabier Cid Vidal – Search for New Physics with rare leptonic decays

/20/22

Conclusions

Conclusions

- Rare leptonic decays are a very relevant indirect search for NP.
 - These decays are a strong point of LHCb! Several searches performed, with the advantage of being similar from an experimental point of view.
- New results presented in $B_{d,s} \rightarrow \mu^+\mu^-$, $B_{d,s} \rightarrow \mu^+\mu^-\mu^+\mu^-$, Majorana neutrinos search and $D^0 \rightarrow \mu^+\mu^-$. Very important constraint to NP phase space, in particular from $B_{d,s} \rightarrow \mu^+\mu^-$. Chance to see a 3 σ evidence in 2012 for a SM BR.

And more exciting results to come...!

