Impact of LHC Searches on a Light Top Squark: Model-Independent Analysis

Bin He

Bartol Research Institute Department Physics and Astronomy University of Delaware

arXiv:1112.4461 [hep-ph] in collaboration with Tong Li, Qaisar Shafi

- 4 同 6 4 日 6 4 日 6

- Motivation
- Overview
- Results

・ロン ・回 と ・ ヨン ・ ヨン

æ

- NLSP stop is favored by electroweak baryongenesis and the naturalness in electroweak symmetry breaking in MSSM.
- Near degeneracy of NLSP stop and LSP neutralino can accommodate co-annihilation mechanism motivated by proper dark matter relic density.
- The search for NLSP stop has been implemented by both LEP and Tevatron, assuming

$$\tilde{t}_1
ightarrow c \tilde{\chi}_1^0$$

Motivation

Overview

- We choose the simplified scenario which parametrizes the new physics by a simple particle spectrum. Particles that are not involved are assumed to be decoupled.
- Only three parameters: $M_{\widetilde{g}}$, $M_{\widetilde{t}_1}$ and $M_{\widetilde{\chi}_1^0}$.
- NLSP stop decay

$${ ilde t_1} o c { ilde \chi_1^0}$$

NLSP stop production

with

 $egin{aligned} &
ho
ho o ilde{t}_1 ilde{t}_1^*, j ilde{t}_1 ilde{t}_1^*, ilde{g} ilde{g} \ & ilde{g} o t ilde{t}_1^*+ ilde{t}_1 \ & ilde{g} \end{aligned}$

高 とう ヨン うまと

Overview

• LHC analysis results with 1 ${\rm fb}^{-1}$.

- $\diamond\,$ jets plus missing transverse momentum
- monojet plus large missing energy
- b-jets with or without lepton plus missing energy
- two same-sign isolated leptons plus hadronic jets and missing energy
- Mass ranges

$$egin{aligned} & M_{ ilde{\chi}_1^0} + M_c < M_{ ilde{t}_1} < M_{ ilde{\chi}_1^0} + M_b + M_W \ & M_{ ilde{g}} > M_{ ilde{t}_1} + M_t \end{aligned}$$

• Madgraph/Madevent production of $\tilde{g}\tilde{g}$, $\tilde{t}_1\tilde{t}_1^*$, $j\tilde{t}_1\tilde{t}_1^*$ Pythia particle decays, parton showering and hadronization PGS-4 detector effects Prospino next-to-leading order cross sections

・ 同 ト ・ ヨ ト ・ ヨ ト

• We first consider

 $pp o ilde{t}_1 ilde{t}_1^* + j ilde{t}_1 ilde{t}_1^*$ with $M_{ ilde{\chi}_1^0} + M_c < M_{ ilde{t}_1} < M_{ ilde{\chi}_1^0} + M_b + M_W$

(日) (四) (王) (王) (王)

Results

- Monojet: 20% co-annihilation region with $M_{{
 t}_1} \lesssim$ 140 GeV is essentially ruled out.
- Multi-jets: $M_{\tilde{t}_1} \lesssim 130$ GeV is essentially ruled out.

▲ 문 ▶ 문

Next we consider

 $pp
ightarrow ilde{t}_1 ilde{t}_1^* + j ilde{t}_1 ilde{t}_1^* + ilde{g} ilde{g}$ with $ilde{g}
ightarrow t ilde{t}_1^* + ilde{t}_1$ and $M_{ ilde{g}} > M_{ ilde{t}} + M_t$

Also, we fix $\frac{M_{\tilde{t}_1} - M_{\tilde{\chi}_1^0}}{M_{\tilde{\chi}_1^0}} = 20\%$ in order to remove one unknown mass parameter $M_{\tilde{\chi}_1^0}$.

- 4 同 6 4 日 6 4 日 6

Results

- b-jets: $M_{ ilde{t}_1}\gtrsim 200$ GeV, $M_{ ilde{g}}\gtrsim 600$ GeV
- ullet same sign dileptons: $\mathit{M}_{\widetilde{t}_1}\gtrsim$ 400 GeV, $\mathit{M}_{\widetilde{g}}\gtrsim$ 700 GeV

æ

∢ ≣ ≯