

Recent results from a search for Dark Matter production in the CMS experiment

Shruti Shrestha On behalf of the CMS collaboration May 8, 2012

Evidence For Dark Matter

 Astrophysical evidence for the existence of Dark Matter (DM) galaxy rotational curves, gravitational lensing, collided galaxy clusters

- Limited knowledge about Dark Matter (DM)
 - DM candidate gravitates and non baryonic
 - It is about five times abundant in the universe
 - It is the only evidence for physics beyond the Standard Model

Dark Matter Searches

Direct Detection

Direct Search Scattering of Dark Matter particles off atomic nuclei within a detector

Indirect Detection

Indirect Search Look for the products of WIMP annihilations

Collider Searches

Collider Search Dark matter pair production escape undetected resulting in a transverse energy imbalance

Collider searches

- Use initial state radiation from incoming quarks to "tag" DM event
- Results is a "monophoton" or "monojet" signature with missing transverse energy (MET) balancing the photon or jet

Selection Criteria

Monophoton

- Require single, isolated photon with transverse energy greater than 145 GeV
- Missing transverse energy balancing the photon
- There should be no other significant activity in the event

Monojet

- Require one or two jets ordered in p_T where leading jet has $p_T > 110$ GeV and second jet may have $p_T > 30$ GeV
- $\Delta \varphi(\text{jet}_1, \text{jet}_2) < 2.5$
- Require MET > 350 GeV (for Dark Matter Search)
- Reject events with an isolated lepton or tracks

Example of signal candidate

Highest p_T monophoton event, $P_T^{\gamma} = 384$ GeV, MET = 407 GeV A monojet event, $p_T(jet) = 547 \text{ GeV}, \text{MET} = 598 \text{ GeV}$

Backgrounds from SM processes

Monophoton

- $pp \rightarrow Z \gamma \rightarrow vv \gamma$
- $pp \rightarrow \gamma + jet$
- $pp \rightarrow \gamma \gamma$
- $pp \rightarrow W \gamma \rightarrow l\nu \gamma$
- $pp \rightarrow W \rightarrow e \nu$
- $pp \rightarrow jets \rightarrow "\gamma" + MET$ [one jet fakes γ and MET due to

[irreducible background (from MC)]
[MET due to mismeasurement of jet (from MC)]
[one γ mismeasured to create MET (fromMC)]
[charged lepton escapes detection (from MC)]
[electron misidentified as γ (from data)

mismeasurement of other jet (from data)]

Monojet

- $pp \rightarrow Z + jets \rightarrow vv + jets$ [Largest background (from data)]
- $pp \rightarrow W + jets \rightarrow lv + jets$ [lepton is "lost" (from data)]

Backgrounds unrelated to pp collisions

Search for excess of events over the predicted backgrounds

Background processes describe the data well and no excess over the predicted SM Backgrounds

Source	Estimate
Jet Mimics Photon	11.2 ± 2.8
Beam Halo	11.1 ± 5.6
Electron Mimics Photon	3.5 ± 1.5
Wγ	3.0 ± 1.0
γ+jet	0.5 ± 0.2
$\gamma\gamma$	0.6 ± 0.3
$Z(\nu\bar{\nu})\gamma$	45.3 ± 6.9
Total Background	75.1 ± 9.5
Total Observed Candidates	73

9

Monojet - Results

Phenomenology

- Assume DM is a Dirac fermion and characterize pair production by contact interaction
 Bai, Fox, Harnik JHEP 1012:048 (2010)
- The effective operator can be a vector or an axial vector

$$\mathcal{O}_{\rm V} = \frac{\left(\bar{\chi}\gamma_{\mu}\chi\right)\left(\bar{q}\gamma^{\mu}q\right)}{\Lambda^2} \qquad \qquad \mathcal{O}_{\rm A} = \frac{\left(\bar{\chi}\gamma_{\mu}\gamma^{5}\chi\right)\left(\bar{q}\gamma^{\mu}\gamma_{5}q\right)}{\Lambda^2}$$

spin-independent spin-dependent

• Cross section depends on contact interaction scale Λ and DM mass (M_{χ})

$$\sigma_{\rm SI} = \frac{9}{\pi} \left(\frac{\mu}{\Lambda^2}\right)^2 \qquad \qquad \sigma_{\rm SD} = \frac{0.33}{\pi} \left(\frac{\mu}{\Lambda^2}\right)^2 \qquad \qquad \frac{\Lambda = M/\sqrt{g_{\chi}g_q}}{\pi}$$

Comparison with other experiments

The best constraints for low mass dark matter, below 3.5 GeV, a region as yet unexplored by Direct detection experiments Limits represent the most stringent constraints over almost entire 1 -100 GeV mass range

Conclusion

- Results are presented from a search for new physics in monophoton channel using 5.0 fb⁻¹ data
- Prediction for SM background consistent with observed data with no excess found
- Limit is set on Dark Matter nucleon scattering cross-section as the function of dark matter mass
- For spin independent models, the best limits for low DM mass which has not yet explored by the direct detection experiment
- For spin dependent models, limits are improved over range 1-100 GeV mass range

Back up slides

DM Signal and limits

- Signal generation
 - Madgraph4 + Pythia6 generation with mediator mass of 10 TeV (monophoton) and 40 TeV(monojet)
- Extraction of DM nucleon cross section
 - Upper limits on monophoton/monojet cross sections converted to lower limits on Λ then translated to DM nucleon cross section

M_{χ} [GeV]	Vector		Axial-Vector	
	σ [fb]	Λ [GeV]	σ [fb]	Λ [GeV]
1	14.3 (14.7)	572 (568)	14.9 (15.4)	565 (561)
10	14.3 (14.7)	571 (567)	14.1 (14.5)	573 (569)
100	15.4 (15.3)	558 (558)	13.9 (14.3)	554 (550)
200	14.3 (14.7)	549 (545)	14.0 (14.5)	508 (504)
500	13.6 (14.0)	442 (439)	13.7 (14.1)	358 (356)
1000	14.1 (14.5)	246 (244)	13.9 (14.3)	172 (171)

90% CL limits on DM model parameters for Monophoton (expected limits in parenthesis)

CMS detector

Particle ID at CMS

