LHC Signatures of Light Gauginos in String Motivated Models

Bob Zheng Based on work done in collaboration with Gordon Kane and Ran Lu arXiv:1204.2795 (.v2 coming soon)

Michigan Center for Theoretical Physics

May 8th, Phenomenology 2012, University of Pittsburg

Outline

- I. Motivation for MSSM with heavy scalars and Wino-LSP
- II. Review of canonical search strategy for gauginos at LHC
- III. Physics of disappearing chargino tracks
- IV. Implications of current ATLAS search for disapearing tracks
- V. Conclusion and outlook

Motivation for Heavy Scalars and Wino-LSP

Heavy scalars:

In theories with moduli fields, cosmological moduli problem avoided if $m_{\phi} > \mathcal{O}(10)$ TeV. In generic SUGRA theories, $m_{\phi} = \mathcal{O}(1)m_{3/2}$.

Ellis, Nanopoulos, Quiros Phys. Lett B174(1986)

Moroi, Yamaguchi, Yanagida arXiv: 9409367

In addition, heavy scalars mitigate SUSY flavor and CP problems

Cohen, Kaplan, Nelson arXiv:9607394; Wells arXiv: 0411041

Wino-LSP:

- For Wino-LSPs produced non-thermally via decay of heavy moduli, proper relic densities can be achieved for m_{LSP} < TeV. Randall, Moroi arXiv: 9906527
- Wino-LSP generic in AMSB models.

Motivation for Heavy Scalars and Wino-LSP: G2-MSSM

Concrete M-theory motivated framework: G2-MSSM Acharva, Kane et. al arXiv:0801.0478

Cosmological moduli problem requires $m_{3/2}\gtrsim 30~{\rm TeV}$ Acharya, Kane, Kumar et. al arXiv:0804.0863

Acharya, Kane Kuflik arXiv:1006.3272

 Can accomodate Wino-LSP which accounts for PAMELA and FERMI LAT results

Kane, Lu, Watson arXiV:0906.4765

• Predicted m_h agrees with recent LHC result.

Kane, Kumar, Lu, BZ arXiv:1112.1059

See Ran Lu's talk in String/GUTs... going on right now!

Canonical Gaugino Search Strategies

Gluino Decays:

• $pp
ightarrow ilde{g} ilde{g}
ightarrow \ \ge 4$ hard jets + MET, large effective mass

- In particular, decays to third generation quarks have low SM background
 Kane, Kuflik, Lu, Wang arXiv:1101.1963
- Care must be taken in interpreting recent LHC limits, as they are model dependent.

Direct production of neutralinos and charginos can also potentially be observable with large luminosity.

LHC Signatures of a Wino-LSP: Dissapearing Chargino Tracks

For $\mu \gtrsim$ TeV and heavy scalars, mass splitting between \tilde{W}^0 and \tilde{W}^{\pm} is largely model independent:

 $\wedge \Lambda \Lambda =$

$$\frac{\alpha_2 M_2}{4\pi} \left[f\left(\frac{m_W}{M_2}\right) - c_W^2 f\left(\frac{m_Z}{M_2}\right) - s_W^2 f(0) \right]$$

Dobrescu et. al arXiv:9811316

Moroi, Randall et. al arXiv:9904250

For $\Delta M \gtrsim 140$ MeV, $\tilde{W}^{\pm} \rightarrow \tilde{W}^0 \pi^{\pm}$ dominates, resulting in $c\tau \sim \mathcal{O}(5)$ cm. Thomas, Wells arXiv:9804359

These $\tilde{W}^{\pm}{}^{\prime}{}^{s}$ travel a macroscopic distance from the primary vertex.

This corresponds to a charged, high p_T particle track disappearing within a detector, a striking signal with little SM physics background.

Detecting Dissapearing Chargino Tracks See Christopher Marino's talk, SUSY I

Fig. 4.2 of https://twiki.cern.ch/twiki/bin/view/AtlasPublic/AtlasTechnicalPaperListOfFigures

- For track reconstruction, W[±] must go past fourth SCT layer, 51.4 cm from beam pipe.

ATLAS arXiv:1202.4847

Observing direct $\tilde{W}^+\tilde{W}^-$ production requires large luminosity even for $\sqrt{s} = 14$ TeV, due to small cross section and triggering difficulties Moroi, Nakayama arXiv:1112.3123.

Look to SUSY decay cascades as potential source of chargino tracks.

Disappearing Tracks as a Probe of Gluino Production

Assuming no large squark hierarchy, gluinos have an O(50%)
 B.R. to q̃q'W̃[±].

NLO
$$\sigma_{\tilde{g}\tilde{g}}$$
 (PROSPINO) for $m_{\tilde{g}} = 750$ (900) GeV:
 $\sigma_{\tilde{g}\tilde{g}} = 114$ (24) fb⁻¹ at $\sqrt{s} = 7$ TeV
 $\sigma_{\tilde{g}\tilde{g}} = 235$ (54) fb⁻¹ at $\sqrt{s} = 8$ TeV

At 10 fb^{-1} of LHC-8 Data (from MadGraph 5):

For $m_{\tilde{g}} = 750$ GeV, number of \tilde{W}^{\pm} 's traveling past SCT layers:

$m_{\widetilde{W}}$	1st SCT Layer	2nd SCT Layer	3rd SCT Layer	4th SCT Layer
$100~{\rm GeV}$	416.3	292.6	208.2	147.9
150 GeV	232.2	150.6	98.9	69.5
200 GeV	125.3	76.5	46.4	30.8
250 GeV	85.2	42.2	24.7	14.8
$300 {\rm GeV}$	49.7	27.6	17.0	9.4

Recent ATLAS Search for Chargino Tracks at 4.7 ${\rm fb}^{-1}$ ATLAS-CONF-2012-034

- No significant excess above SM background.
- 95 % CL: $\sigma A \lesssim 0.9 \text{ fb}^{-1}$ for track $p_T > 50 \text{ GeV}$.

Predicted σA for $m_{\tilde{g}} = 750$ GeV, $\sqrt{s} = 7$ TeV(preliminary):

MadGraph5/Pythia + PGS

$m_{ ilde W^\pm}$	100 GeV	150 GeV	200 GeV	250 GeV	300 GeV
$\sigma \times A \text{ (fb}^{-1}\text{)}$	4.2	1.7	0.9	0.43	0.15

Speculations of a Naive Phenomenologist: Doubly Suppressed Background?

High p_T disappearing tracks have very low background rates.

- E.g. @ 4.7 fb⁻¹(ATLAS-CONF-2012-034):
 - After kinematic cuts (3 hard jets, $\not\!\!E_T > 130$ GeV):
 - ightarrow 73433 events
 - \rightarrow 304 disappearing track events
 - \rightarrow 8 high p_{T} disappearing track events

Speculations of a Naive Phenomenologist: Doubly Suppressed Background? cont.

Signal regions for typical $\tilde{g}\tilde{g}$ searches have small number of events after applying hard jet p_T , m_{eff} and $\not E_T$ cuts.

■ 4 hard jets, $\not{\!\!E}_T > 130$ GeV, $m_{eff} > 500$ GeV \rightarrow **1118 events** ■ 4 hard jets, $\not{\!\!E}_T > 130$ GeV, $m_{eff} > 1000$ GeV \rightarrow **40 events**

Disappearing \tilde{W}^{\pm} track signals from $\tilde{g}\tilde{g}$ events are robust under typical SUSY search cuts.

• E.g. @ 10 fb⁻¹, $m_{\tilde{g}} = 750$ GeV, $m_{\tilde{W}^{\pm}} = 150$ GeV:

- $\blacksquare \text{ No cuts } \longrightarrow \textbf{34 disappearing chargino track events}$

Speculations of a Naive Phenomenologist: Doubly Suppressed Background? cont.

- By first applying gluino search cuts (4 hard jets, large ∉_T and m_{eff}) and looking for disappearing tracks in the surviving events, the background could potentially be "doubly suppressed" without significantly reducing signal strength!
- May potentially increase kinematic reach of LHC for gluino detection at large luminosities.
- However, background is data driven and difficult to estimate. Only careful analysis by detector groups can determine how successful this approach will be at reducing the background.

Conclusions

- Heavy scalars can mitigate flavor and CP problems of the MSSM with a realistic Ω_{χ} , provided a non-thermal history with moduli decay and a Wino-LSP.
- In such theories, gluinos decaying to disappearing chargino tracks can give a signal reaching substantially into $m_{\tilde{g}} m_{\tilde{W}^{\pm}}$ plane.
- Gluino searches complemented by searches for disappearing tracks can potentially give very low background signals in Wino-LSP models.
- Requires careful study by detector groups to determine true power of this signal.
- Analysis updated with latest LHC data forthcoming; Kane, Lu, BZ arXiv: 1202.4448v2
- Thanks for listening!