Measuring Coloron Couplings Through Associated Production with W Boson at the LHC

Pawin Ittisamai

with

Anupama Atre, R. Sekhar Chivukula, Elizabeth Simmons, and Jianghao Yu

Michigan State University

May 8, 2011

Introduction

Entering discovery era with the LHC

- Friendly with strong dynamics \rightarrow new colored particles colorons, axigluons, Kaluza-Klein gluons, Techni-rhos, ...
- Measuring properties of particle if discovered: mass, couplings, ...

Introduction

Entering discovery era with the LHC

 Friendly with strong dynamics → new colored particles colorons, axigluons, Kaluza-Klein gluons, Techni-rhos, ...

• Measuring properties of particle if discovered: mass, couplings, ... Massive color-octet vector bosons: Colorons/Axigluons Hill, Parke (1993) / Frampton, Glashow (1987)

- Explains Tevatron $t\bar{t}$ forward-backward Asymmetry
- $\bullet\,$ Decay to light quarks $\rightarrow\,$ can be discovered via dijet resonance

ATLAS Collaboration (2012)

Goal

Associated production with $\ensuremath{\mathrm{W}}$

Measurement

Goal

Goal

" Using associated production" with ${\cal W}$ and dijet resonance to determine colorons/axigluons couplings."

*Idea introduced by Cvetic and Langacker (1992) for measuring Z' couplings

Minimal Model $SU(3) \times SU(3) \rightarrow SU(3)_{C}$

• Allows flavor universal and non-universal charge assignments

$$\underbrace{\underbrace{g_s \bar{q} C^{\mu} \gamma_{\mu} \left(g_V^q + g_A^q \gamma_5\right) q}_{q=u,d,c,s}}_{T=t,b} \quad \text{and} \quad \underbrace{\underbrace{g_s \bar{T} C^{\mu} \gamma_{\mu} \left(g_V^T + g_A^T \gamma_5\right) T}_{T=t,b}}_{T=t,b}$$

Enhances top forward-backward asymmetry

$$g_V^T = g_V^q, \qquad g_A^T = -g_A^q$$

Ferrario and Rodrigo (2009)

Signals: Associated Production with W

Study colorons with masses $2.5\,\mathrm{TeV}$ to $4.5\,\mathrm{TeV}$ with a leptonic-decayed W boson at 14 TeV LHC.

Pheno '12: Measuring Coloron Couplings Through Associated Production W

Backgrounds (Standard Model)

- $W(\rightarrow I\nu)$ + jets
- Semileptonic $t\bar{t}$ + jets
- $Z (\rightarrow II) + jets$
- singletop (leptonic)
- WW ($\rightarrow I\nu, jj$) + jets
- WZ (→ *l*ν, *jj*) + jets
- $ZZ (\rightarrow II, jj) + jets (missing lepton)$
- $ZW (\rightarrow II, jj) + jets$
- WZ (\rightarrow I ν , $\nu\nu$) + jets
- Leptonic $t\bar{t}$ + jets (missing lepton)
- Hadronic $t\bar{t}$ + jets (isolated lepton)

Backgrounds (Standard Model)

Leading

• $W(\rightarrow l\nu)$ + jets

Sub-leading

- Semileptonic $t\bar{t}$ + jets
- $Z (\rightarrow II) + jets$
- singletop (leptonic)

Insignificant after cuts

- WW $(\rightarrow l\nu, jj)$ + jets
- WZ ($\rightarrow l\nu, jj$) + jets
- $ZZ (\rightarrow II, jj) + jets (missing lepton)$
- $ZW (\rightarrow II, jj) + jets$
- WZ $(\rightarrow l\nu, \nu\nu)$ + jets
- Leptonic $t\bar{t}$ + jets (missing lepton)
- Hadronic $t\bar{t}$ + jets (isolated lepton)

Event Generation and Event Selection

Event Generation: MadGraph 5.1.3 \rightarrow Pythia 6.4 \rightarrow PGS4

Event Selection ("Basic cuts"):

- At least two isolated jets
 - $p_T > 40 \,\mathrm{GeV}$
 - $|\eta| < 2.5$
 - ΔR_{jj} > 0.4
- One isolated electron or muon
 - $p_T > 25 \,\mathrm{GeV}$
 - $|\eta| < 2.5$
 - $\Delta R_{jl} > 0.4$, $\Delta R_{ll} > 0.2$
- $\bullet~\mbox{Missing energy}>25\,{\rm GeV}$

Optimization:

- p_T of leading jets
- Total transverse jet energy $H_T \simeq \sum p_T$

• Invariant masss m_{jj} or mT_{jjW}

"Counting experiment": Maximize significance $\simeq \frac{s}{\sqrt{b}}$ at 10 fb^{-1} and 100 fb^{-1} for LHC 14 TeV, requiring at least 10 events.

Only p_T of the two leading jets are hard - they are "encoded" in H_T and m(jj) or $m_T(jjW)$.

Optimization

Pawin Ittisamai: Michigan State University

Number of events for 3 TeV coloron with $\Gamma/M = 0.2$, $g_V = 1.3$, $g_A = 0$ at 14 TeV, 10 fb^{-1} :

process	basic	$ pT_{j1} >$	$pT_{j2} >$
	cuts	1000	950
		GeV	${\rm GeV}$
signal	250	82	52
Wjj	$2.1 imes10^{6}$	240	84
tī	$240 imes 10^3$	4	0
single- <i>t</i>	$68 imes10^3$	1	0
Zjj	48×10^3	7	4

Significance $\simeq 5.5$

2 Signals, Backgrounds, and Optimizations

$\overline{\mathrm{Wjj}}$ with $3\,\mathrm{TeV}$ coloron/axigluon

$\overline{\mathrm{Wjj}}$ with $3\,\mathrm{TeV}$ coloron/axigluon

• Width: $\frac{\frac{\Gamma}{M} \simeq \alpha_s \left(g_V^2 + g_A^2 \right)}{\simeq \frac{\alpha_s}{2} \left(g_L^2 + g_R^2 \right)}$ • significance $\simeq \frac{s}{\sqrt{b}}$

$\rm Wjj$ with $3\,\rm TeV$ coloron/axigluon

• Width: $\frac{\Gamma}{M} \simeq \alpha_s \left(g_V^2 + g_A^2\right)$ $\simeq \frac{\alpha_s}{2} \left(g_L^2 + g_R^2\right)$ • significance $\simeq \frac{s}{\sqrt{b}}$ • Dijet exclusion at 7 TeV, 1 fb⁻¹ CMS (2011): search for narrow width - does not constraint broad one. [Bai, Hewett, Kaplan, Rizzo (2011)]

$\rm Wjj$ with $3\,\rm TeV$ coloron/axigluon

• Width: $\frac{\Gamma}{M} \simeq \alpha_s \left(g_V^2 + g_A^2 \right)$ $\simeq \frac{\alpha_s}{2} \left(g_I^2 + g_R^2 \right)$ • significance $\simeq \frac{s}{\sqrt{h}}$ Dijet exclusion at $7 \, {\rm TeV}$. $1 \, {\rm fb}^{-1}$ CMS (2011): search for narrow width - does not constraint broad one. [Bai, Hewett, Kaplan, Rizzo (2011)] • Sensitivity at 14 TeV, $100 \, {\rm fb}^{-1}$

[Scaled from CMS-NOTE 2006-070]

Wjj with $3\,\mathrm{TeV}$ coloron/axigluon: $10\,\mathrm{fb}^{-1}$ vs $100\,\mathrm{fb}^{-1}$

Introduction Signals and Backgrounds Results Conclusions

Wjj 3TeV Wjj: 100fb AFB constraint Wjj Reach Zjj

Wjj: Constraint from Tevatron $A_{FB}^{t\bar{t}}$

 \bullet Observed at CDF (5.3 ${\rm fb}^{-1})$ and at D0 (at 5.4 ${\rm fb}^{-1})$

CDF Collaboration (2011), D0 Collaboration (2011)

 Analysis by Ferrario and Rodrigo (2010) shows region giving sufficient asymmetry for

$$g_V^t = g_V^q, \qquad g_A^t = -g_A^q$$

Pheno '12: Measuring Coloron Couplings Through Associated Production W

Reach: Wjj with 4.5 TeV coloron/axigluon

Complementary Info: Associated Production with Z-boson

Leptonic-decayed Z Compared with the "Wjj" case:

- Using similar event selection.
- More sensitive (only SM Zjj dominates)
- Helpful for region with $g_L \simeq 0$ $(g_V \simeq g_A)$

Conclusions

Conclusions

- Assume the discovery
- Dijet results + asosciated production W/Z
- Measure couplings

- Study LHC 14 ${\rm TeV},$ $10\,{\rm fb}^{-1}$ and 100 ${\rm fb}^{-1}$
- Regions satisfying the dijet constraints and A_{FB} with enough significance for the measurement exist.

 Complementary measurement from Z for region g_L ≃ 0

Thank You Very Much!