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Status of Supersymmetry
I LHC places stringent limits on the masses of colored

superpartners (5 fb−1)

mg̃ & 900 GeV
m{ũ,d̃ ,c̃,s̃} & 1.2− 1.4 TeV

I Heavy superpartners imply significant fine-tuning of the
weak scale

What possibilities remain for natural weak-scale SUSY?

I Weaker heavy flavor
bounds allow light t̃ ,
reducing quadratic
corrections

I Heavier sfermions with
dynamically-generated
naturalness



In Defense of Heavy Scalars

I Heavy scalars are
consistent with the data!

I Look for RPV,
squashed spectra, dark
matter detection,
electroweak
production, etc.

I Heavy stops are needed
to produce a light Higgs
mass of 125 GeV in the
absence of large mixing

I Heavy scalars are more
consistent with flavor and
CP constraints

Focus point scenario
provides for “dynamically
natural” heavy scalars

Matchev and Feng (2000)

I Renormalization
suppresses shifts in
electroweak potential due
to large scalar masses

I Previously realized in
A0 = 0 limit, requiring
mt̃ ∼ 10 TeV and
∼ 0.05% fine-tuning for
mh = 125 GeV



Focus Point SUSY: Natural Heavy Scalars

I In the limit of moderate to large tanβ, observed values for
electroweak symmetry breaking require balancing the
values of µ2 and m2

Hu

m2
Z ≈ −2µ2 − 2m2

Hu
(mW )

I If m2
Hu

is small at the high scale fine-tuning will be low

I Fine-tuning will also be low if m2
Hu

is large but runs to a
small value due to RGEs

I Focus point provides a set of boundary conditions to
produce this running

I For A0 = 0, the CMSSM unified mass condition produces
the proper running→ “focus point region” of CMSSM

Wish to generalize to A0 6= 0



Renormalization Group and the Focus Point
I For moderate tanβ, the dominant RG behavior of m2

Hu
and

stop masses is proportional to yt
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Renormalization Group and the Focus Point

Specialize to CMSSM extension with modified scalar mass
boundary condition

I Overall mass scale m2
Hu

(mGUT) = m2
0

I Fine-tuning is reduced for m2
Hu

(mW ) = 0
I e6I(mW ) ' 1
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Parameter Space of the Focus Point
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Fine-Tuning Measure

Fine-tuning is inherently subjective and fine-tuning measures
fragile

I Highly model-dependent
I Focus is dependent on motivations
I “Unreasonable” level of fine-tuning varies from person to

person
I Nevertheless, need numerical measure. . .

ca ≡

∣∣∣∣∣∂ ln m2
Z

∂ ln a2

∣∣∣∣∣
a ⊂ {m0,M1/2, µ,

√
B}



Results: CMSSM (x = 0, y = 0)
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Results: Model A (x = 1/4, y = 1/6)
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Results: Model B (x = 5/9, y = 7/27)
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Mg̃ and mt̃1 for mh = 125 GeV
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Dark Matter Considerations

I Ωχ = ΩDM curve found for M1/2 ∼ 150− 200 GeV

Ruled out by gluino searches: mg̃ & 900 GeV

Significant overdensity for larger M1/2 in accordance with gluino
bound

I R-parity violation avoids constraint
I Can introduce gluino/axino dark matter
I Can produce consistency in MSSM wtih non-unified

gaugino masses

At gluino bound, c ' 300 (Model A), 110 (Model B) for
mh = 125 GeV



Conclusion

I Heavy scalars can still be natural with appropriate
boundary conditions!

I A-terms can be included while retaining naturalness to
reduce fine-tuning for mh = 125 GeV

I Can achieve O(.3− .4%) fine-tuning for models with GUT
unification of stop masses and O(1%) for more
complicated boundary conditions

I Best results have lighter stops (but still ≥ 1 TeV), but
require additional input for consistent dark matter



Backup Slides



Backup Slide: Deflection of the Focus Point

Why does the µ2 < 0 region move?

I Only considered part of m2
Hu

RGE
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I Second line generally deflects m2
Hu

to positive values
I Significant corrections to m2

Hu
from deflection of At
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I Negative contribution to m2

Hu
for At , M3 with opposite signs


