Correlations in Double Parton Scattering

Wouter Waalewijn
UCSD

Pheno 2012

In collaboration with Aneesh Manohar arXiv: 1202.3794,1202.5034

What is Double Parton Scattering?

- Single parton scattering (SPS): one partonic collision for colliding protons

What is Double Parton Scattering?

- Single parton scattering (SPS): one partonic collision for colliding protons
- Double parton scattering (DPS): two partonic collisions (not pile-up!)
- DPS is $\Lambda_{\mathrm{QCD}}^{2} / Q^{2}$ suppressed, only important when signal is small

Examples

- Light Higgs searches, $p \boldsymbol{p} \rightarrow \boldsymbol{W} \boldsymbol{H} \rightarrow \ell \boldsymbol{\nu} \overline{\boldsymbol{b}}$: DPS background important [Del Fabbro, Treleani; Hussein; Berger, Jackson, Shaughnessy; Bandurin, Golovanov, Skachkov]

[Bandurin, Golovanov, Skachkov (1011.2186)]

Examples

- Light Higgs searches, $p \boldsymbol{p} \rightarrow \boldsymbol{W} \boldsymbol{H} \rightarrow \ell \boldsymbol{\nu} \overline{\boldsymbol{b}}$: DPS background important [Del Fabbro, Treleani; Hussein; Berger, Jackson, Shaughnessy; Bandurin, Golovanov, Skachkov]

[Bandurin, Golovanov, Skachkov (1011.2186)]
- Same-sign leptons, $\boldsymbol{p} \boldsymbol{p} \rightarrow \boldsymbol{W}^{+} \boldsymbol{W}^{+}$: SPS requires additional jets [Kulesza, Stirling, Gaunt, Kom; Cattaruzza, Del Fabbro, Treleani; Meina]

Examples

- $p \boldsymbol{p} \rightarrow \boldsymbol{W}+2$ jets: DPS jets are back-to-back in transverse plane

DPS:

Double Parton Scattering at the LHC

- $p p \rightarrow W+2$ jets with $p_{T}^{\text {jet }}>20 \mathrm{GeV}$
- Use $\Delta_{\text {jets }}^{n}=\left|\vec{p}_{T}^{\text {jet, }}+\vec{p}_{T}^{\text {jet,2 }}\right| /\left(\left|\vec{p}_{T}^{\text {jet, } 1}\right|+\left|\vec{p}_{T}^{\text {jet,2 }}\right|\right)$
- DPS observed in $33 \mathrm{pb}^{-1}$ of data (no pile-up)
- Fit to shape of SPS/DPS from Monte Carlo
\rightarrow extract fraction of DPS events $f_{\text {DPS }}=16 \%$

Calculating Cross Sections (Until Recently)

SPS:

$$
\mathrm{d} \sigma=\sum_{i, j} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) \hat{\sigma}_{i j}\left(x_{1} x_{2} s\right)
$$

- PDF $f_{i}(x)$ is probability in x for finding parton of type $i=g, u, \bar{u}, d, \ldots$
- $\hat{\sigma}_{i j}$ is partonic cross section for $i j \rightarrow$ final state

Calculating cross Sections (until Recently)

SPS:

$$
\mathrm{d} \sigma=\sum_{i, j} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) \hat{\sigma}_{i j}\left(x_{1} x_{2} s\right)
$$

- PDF $f_{i}(x)$ is probability in x for finding parton of type $i=g, u, \bar{u}, d, \ldots$
- $\hat{\sigma}_{i j}$ is partonic cross section for $i j \rightarrow$ final state

DPS:

$$
\mathrm{d} \sigma=\int \mathrm{d}^{2} z_{T} \sum_{i, j, k, l} F_{i j}\left(x_{1}, x_{2}, z_{T}\right) F_{k l}\left(x_{3}, x_{4}, z_{T}\right) \hat{\sigma}_{i k}\left(x_{1} x_{3} s\right) \hat{\sigma}_{j l}\left(x_{2} x_{4} s\right)
$$

- Double PDF $F_{i j}\left(x_{1}, x_{2}, z_{T}\right)$ depends on transverse separation z_{T}

Effective Cross Section

$$
\mathrm{d} \sigma=\int \mathrm{d}^{2} z_{T} \sum_{i, j, k, l} F_{i j}\left(x_{1}, x_{2}, z_{T}\right) F_{k l}\left(x_{3}, x_{4}, z_{T}\right) \hat{\sigma}_{i k}\left(x_{1} x_{3} s\right) \hat{\sigma}_{j l}\left(x_{2} x_{4} s\right)
$$

Commonly-used assumptions:

- No correlation between x_{i} and $z_{T}: F_{i}\left(x_{1}, x_{2}, z_{T}\right)=F_{i}\left(x_{1}, x_{2}\right) F\left(z_{T}\right)$
- Uncorrelated partons: $F_{i j}\left(x_{1}, x_{2}\right)=f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right)$ Not valid at large x, since $x_{1}+x_{2} \leq 1$

Effective Cross Section

$$
\mathrm{d} \sigma=\int \mathrm{d}^{2} z_{T} \sum_{i, j, k, l} F_{i j}\left(x_{1}, x_{2}, z_{T}\right) F_{k l}\left(x_{3}, x_{4}, z_{T}\right) \hat{\sigma}_{i k}\left(x_{1} x_{3} s\right) \hat{\sigma}_{j l}\left(x_{2} x_{4} s\right)
$$

Commonly-used assumptions:

- No correlation between x_{i} and $z_{T}: F_{i}\left(x_{1}, x_{2}, z_{T}\right)=F_{i}\left(x_{1}, x_{2}\right) F\left(z_{T}\right)$
- Uncorrelated partons: $F_{i j}\left(x_{1}, x_{2}\right)=f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right)$ Not valid at large x, since $x_{1}+x_{2} \leq 1$
Effective cross section:

$$
\sigma \sim \sigma_{1} \sigma_{2} \int \mathrm{~d}^{2} z_{T} F\left(z_{T}\right)^{2}=\frac{\sigma_{1} \sigma_{2}}{\sigma_{\text {eff }}}
$$

- $\sigma_{\text {eff }} \sim 1 / \Lambda_{\mathrm{QCD}}^{2} \sim \mathrm{mB}$.
- Experimentally: $\sigma_{\text {eff }} \sim 5-15 \mathrm{mB}$

Full QCD analysis

Our work:

- QCD factorization of the cross section (without assumptions)
- Field-theoretic definition of double PDFs \rightarrow derive RGE and properties
- Addresses obstacles:
- Rapidity divergences complicate factorization
- Overlap between single and double PDFs

Full QCD analysis

Our work:

- QCD factorization of the cross section (without assumptions)
- Field-theoretic definition of double PDFs \rightarrow derive RGE and properties
- Addresses obstacles:
- Rapidity divergences complicate factorization
- Overlap between single and double PDFs

Factorization for double Drell-Yan [Manohar, ww]

$$
\begin{aligned}
& \frac{\mathrm{d} \sigma^{\mathrm{DPS}}}{\mathrm{~d} q_{1}^{2} \mathrm{~d} Y_{1} \mathrm{~d} q_{2}^{2} \mathrm{~d} Y_{2}}=\left(\frac{4 \pi \alpha^{2} Q_{q}^{2}}{3 N_{c} s}\right)^{2} \frac{1}{q_{1}^{2} q_{2}^{2}} \int \mathrm{~d}^{2} \boldsymbol{z}_{T}\left\{\left[\boldsymbol{F}_{q q}^{1} \boldsymbol{F}_{\bar{q} \bar{q}}^{1}+\boldsymbol{F}_{q \bar{q}}^{1} \boldsymbol{F}_{\bar{q} q}^{1}+\boldsymbol{F}_{\Delta q \Delta q}^{1} \boldsymbol{F}_{\Delta \bar{q} \Delta \bar{q}}^{1}+\boldsymbol{F}_{\Delta q \Delta \bar{q}}^{1} \boldsymbol{F}_{\Delta \bar{q} \Delta q}^{1}\right]\right. \\
& +\frac{2 N_{c}}{C_{\boldsymbol{F}}}\left[\left(\boldsymbol{F}_{q q}^{T} \boldsymbol{F}_{\bar{q} \bar{q}}^{T}+\boldsymbol{F}_{\Delta q \Delta q}^{T} \boldsymbol{F}_{\Delta \bar{q} \Delta \bar{q}}^{T}\right)+\left(\boldsymbol{F}_{q \bar{q}}^{T} \boldsymbol{F}_{\bar{q} q}^{T}+\boldsymbol{F}_{\Delta q \Delta \bar{q}}^{T} \boldsymbol{F}_{\Delta \bar{q} \Delta q}^{T}\right)\right] S^{T T} \\
& +\frac{1}{2}\left[\left(I_{\bar{q} q}^{1}+I_{\Delta \bar{q} \Delta q}^{1}\right)\left(I_{q \bar{q}}^{1}+I_{\Delta q \Delta \bar{q}}^{1}\right)+\boldsymbol{I}_{\delta \bar{q} \delta q}^{1} I_{\delta q \delta \bar{q}}^{1}\right] S_{I}^{11} \\
& +\frac{N_{c}}{2}\left[\left(\boldsymbol{I}_{\bar{q} q}^{T}+\boldsymbol{I}_{\Delta \bar{q} \Delta q}^{T}\right)\left(\boldsymbol{I}_{q \bar{q}}^{1}+\boldsymbol{I}_{\Delta q \Delta \bar{q}}^{1}\right)+\boldsymbol{I}_{\delta \bar{q} \delta q}^{T} \boldsymbol{I}_{\delta q \delta \bar{q}}^{1}+(\mathbf{1} \leftrightarrow \boldsymbol{T})\right] S_{I}^{T 1} \\
& \left.+\frac{N_{c}}{C_{F}}\left[\left(\boldsymbol{I}_{\bar{q} q}^{T}+\boldsymbol{I}_{\Delta \bar{q} \Delta q}^{T}\right)\left(\boldsymbol{I}_{q \bar{q}}^{T}+\boldsymbol{I}_{\Delta q \Delta \bar{q}}^{T}\right)+\boldsymbol{I}_{\delta \bar{q} \delta q}^{T} \boldsymbol{I}_{\delta q \delta \bar{q}}^{T}\right] S_{I}^{T T}+(\boldsymbol{q} \leftrightarrow \overline{\boldsymbol{q}})\right\}
\end{aligned}
$$

- New effects: spin correlations, color correlations, interference in fermion number, soft radiation

Full QQD analysis

Our work:

- QCD factorization of the cross section (without assumptions)
- Field-theoretic definition of double PDFs \rightarrow derive RGE and properties
- Addresses obstacles:
- Rapidity divergences complicate factorization
- Overlap between single and double PDFs

Factorization for double Drell-Yan [Manohar, Ww]

$$
\begin{aligned}
&\left.\frac{\mathrm{d} \sigma^{\mathrm{DPS}}}{\frac{\mathrm{~d} q_{1}^{2} \mathrm{~d} Y_{1} \mathrm{~d} q_{2}^{2} \mathrm{~d} Y_{2}}{}=\left(\frac{4 \pi \alpha^{2} Q_{q}^{2}}{3 N_{c} s}\right.}\right)^{2} \frac{1}{q_{1}^{2} q_{2}^{2}} \int \mathrm{~d}^{2} \boldsymbol{z}_{\boldsymbol{T}}\left\{\left[\boldsymbol{F}_{q q}^{1} \boldsymbol{F}_{\bar{q} \bar{q}}^{1}+\boldsymbol{F}_{q \bar{q}}^{1} \boldsymbol{F}_{\bar{q} q}^{1}+\boldsymbol{F}_{\Delta q \Delta q}^{1} \boldsymbol{F}_{\Delta \bar{q} \Delta \bar{q}}^{1}+\boldsymbol{F}_{\Delta q \Delta \bar{q}}^{1} \boldsymbol{F}_{\Delta \bar{q} \Delta q}^{1}\right]\right. \\
&+\frac{2 N_{c}}{C_{\boldsymbol{F}}}\left[\left(\boldsymbol{F}_{q q}^{T} \boldsymbol{F}_{\bar{q} \bar{q}}^{T}+\boldsymbol{F}_{\Delta q \Delta q}^{T} \boldsymbol{F}_{\Delta \bar{q} \Delta \bar{q}}^{T}\right)+\left(\boldsymbol{F}_{q \bar{q}}^{T} \boldsymbol{F}_{\bar{q} q}^{T}+\boldsymbol{F}_{\Delta q \Delta \bar{q}}^{T} \boldsymbol{F}_{\Delta \bar{q} \Delta q}^{T}\right)\right] S^{T T} \\
&+\frac{1}{2}\left[\left(\boldsymbol{I}_{\bar{q} q}^{1}+\boldsymbol{I}_{\Delta \bar{q} \Delta q}^{1}\right)\left(\boldsymbol{I}_{q \bar{q}}^{1}+\boldsymbol{I}_{\Delta q \Delta \bar{q}}^{1}\right)+\boldsymbol{I}_{\delta \bar{q} \delta q}^{1} \boldsymbol{I}_{\delta q \delta \bar{q}}^{1}\right] S_{I}^{11} \\
&+\frac{N_{c}}{2}\left[\left(\boldsymbol{I}_{\bar{q} q}^{T}+\boldsymbol{I}_{\Delta \bar{q} \Delta q}^{T}\right)\left(\boldsymbol{I}_{q \bar{q}}^{1}+\boldsymbol{I}_{\Delta q \Delta \bar{q}}^{1}\right)+\boldsymbol{I}_{\delta \bar{q} \delta q}^{T} \boldsymbol{I}_{\delta q \delta \bar{q}}^{1}+(\mathbf{1} \leftrightarrow \boldsymbol{T})\right] S_{I}^{T 1} \\
&\left.+\frac{N_{c}}{C_{F}}\left[\left(\boldsymbol{I}_{\bar{q} q}^{T}+\boldsymbol{I}_{\Delta \bar{q} \Delta q}^{T}\right)\left(\boldsymbol{I}_{q \bar{q}}^{T}+\boldsymbol{I}_{\Delta q \Delta \bar{q}}^{T}\right)+\boldsymbol{I}_{\delta \bar{q} \delta q}^{T} \boldsymbol{I}_{\delta q \delta \bar{q}}^{T}\right] S_{I}^{T T}+(\boldsymbol{q} \leftrightarrow \bar{q})\right\}
\end{aligned}
$$

- New effects: spin correlations, color correlations, interference in fermion number, soft radiation
- We find: color correlations and interferences are Sudakov suppressed!

Double PDF Definition

$$
\begin{gathered}
F_{q q}^{1}\left(\frac{q_{1}^{-}}{p_{1}^{-}}, \frac{q_{2}^{-}}{p_{1}^{-}}, z_{T}\right)=-4 \pi p_{1}^{-} \int \frac{\mathrm{d} z_{1}^{+}}{4 \pi} \frac{\mathrm{~d} z_{2}^{+}}{4 \pi} \frac{\mathrm{~d} z_{3}^{+}}{4 \pi} e^{-\mathrm{i} q_{1}^{-} z_{1}^{+} / 2} e^{-\mathrm{i} q_{2}^{-} z_{2}^{+} / 2} e^{\mathrm{i} q_{1}^{-} z_{3}^{+} / 2} \\
\times\left\langle p_{1}\right| \bar{T}\left\{\left[\bar{\psi}\left(z_{1}^{+}, 0, z_{T}\right) \frac{\vec{p}}{2}\right]_{a}\left[\bar{\psi}\left(z_{2}^{+}, 0,0_{T}\right) \frac{\bar{p}}{2}\right]_{b}\right\} \\
T\left\{\psi_{a}\left(z_{3}^{+}, 0, z_{T}\right) \psi_{b}(0)\right\}\left|p_{1}\right\rangle
\end{gathered}
$$

- Like a PDF at z_{T} and 0_{T}
- Wilson lines ensure gauge invariance (not shown)

Spin Correlations for Single PDF

[Mekhfi; Diehl, Ostermeier, Schäfer; Manohar, WW]

- Single PDF spin structures:

$$
\begin{array}{lrl}
\Gamma=\frac{1}{2} \vec{n} & q(x) & \text { unpolarized } \\
\Gamma=\frac{1}{2} \vec{n} \gamma_{5} & \Delta \boldsymbol{q}(x) & \text { longitudinally polarized } \\
\Gamma=\frac{i}{2} \bar{n}_{\nu} \sigma^{\mu \nu} \gamma_{5} & \delta q(x) & \text { transversely polarized }
\end{array}
$$

Spin Correlations for Double PDF

[Mekhfi; Diehl, Ostermeier, Schäfer; Manohar, WW]

- Single PDF spin structures:

$$
\begin{array}{lrl}
\Gamma=\frac{1}{2} \vec{n} & q(x) & \text { unpolarized } \\
\Gamma=\frac{1}{2} \vec{n} \gamma_{5} & \Delta \boldsymbol{q}(x) & \text { longitudinally polarized } \\
\Gamma=\frac{i}{2} \bar{n}_{\nu} \sigma^{\mu \nu} \gamma_{5} & \delta q(x) & \text { transversely polarized }
\end{array}
$$

- Unpolarized double PDF has spin correlations:
$\Gamma_{1} \otimes \Gamma_{2}=\frac{1}{2} \vec{n} \otimes \frac{1}{2} \vec{n}, \quad \frac{1}{2} \vec{k} \gamma_{5} \otimes \frac{1}{2} \vec{n} \gamma_{5}, \quad \frac{1}{2} \vec{n} \otimes \frac{1}{2} \bar{n}^{\mu} \sigma_{\mu \rho} \gamma_{5} z_{T}^{\rho}, \ldots$

Spin Correlations for Double PDF

[Mekhfi; Diehl, Ostermeier, Schäfer; Manohar, WW]

- Single PDF spin structures:

$$
\begin{array}{lrl}
\Gamma=\frac{1}{2} \vec{n} & q(x) & \text { unpolarized } \\
\Gamma=\frac{1}{2} \vec{n} \gamma_{5} & \Delta q(x) & \text { longitudinally polarized } \\
\Gamma=\frac{i}{2} \bar{n}_{\nu} \sigma^{\mu \nu} \gamma_{5} & \delta q(x) & \text { transversely polarized }
\end{array}
$$

- Unpolarized double PDF has spin correlations:

$$
\Gamma_{1} \otimes \Gamma_{2}=\frac{1}{2} \overrightarrow{\boldsymbol{n}} \otimes \frac{1}{2} \overrightarrow{\boldsymbol{n}}, \quad \frac{1}{2} \overrightarrow{\boldsymbol{n}} \gamma_{5} \otimes \frac{1}{2} \vec{n} \gamma_{5}, \quad \frac{1}{2} \vec{n} \otimes \frac{\mathrm{i}}{2} \bar{n}^{\mu} \sigma_{\mu \rho} \gamma_{5} z_{T}^{\rho}, \ldots
$$

- Interpretation:

$$
F_{\Delta q \Delta q} \sim\langle p|\left(a_{1 R}^{\dagger} a_{1 R}-a_{1 L}^{\dagger} a_{1 L}\right)\left(a_{2 R}^{\dagger} a_{2 R}-a_{2 L}^{\dagger} a_{2 L}\right)|p\rangle
$$

Color Correlations

- Double PDF color structures:

$$
\Gamma_{1} \otimes \Gamma_{2}=1 \otimes 1, \quad T^{A} \otimes T^{A}
$$

Color Correlations

- Double PDF color structures:

$$
\Gamma_{1} \otimes \Gamma_{2}=1 \otimes 1, \quad T^{A} \otimes T^{A}
$$

Color Correlations

- Double PDF color structures:

$$
\Gamma_{1} \otimes \Gamma_{2}=1 \otimes 1, \quad T^{A} \otimes T^{A}
$$

- $T^{A} \otimes T^{A}$ measures color correlation

$$
\begin{array}{ll}
\boldsymbol{F}_{q \bar{q}}^{(1)}=\boldsymbol{F}_{q \bar{q}}^{1}+\frac{N^{2}-1}{2 N} \boldsymbol{F}_{q \bar{q}}^{T}, & \boldsymbol{F}_{q \bar{q}}^{(8)}=\boldsymbol{F}_{q \bar{q}}^{1}-\frac{1}{2 \boldsymbol{N}} \boldsymbol{F}_{q \bar{q}}^{T} \\
\boldsymbol{F}_{q q}^{(6)}=\boldsymbol{F}_{q q}^{1}+\frac{N-1}{2 \boldsymbol{N}} \boldsymbol{F}_{q q}^{T}, & \boldsymbol{F}_{q q}^{(\overline{3})}=\boldsymbol{F}_{q q}^{\mathbf{1}}-\frac{\boldsymbol{N}+1}{2 \boldsymbol{N}} \boldsymbol{F}_{q q}^{T}
\end{array}
$$

Interference Effects

- Interference in fermion number is possible

$$
I_{q \bar{q}}\left(x_{1}, x_{2}, z_{T}\right) \sim\langle p| \bar{q}_{2} \Gamma_{1} q_{1} \bar{q}_{2} \Gamma_{2} q_{1}|p\rangle
$$

- The interference double PDF does not have to be real: $I_{q \bar{q}}^{*}=I_{\bar{q} q}$

Soft Gluon Emissions

$$
\begin{aligned}
& \boldsymbol{\sigma} \sim \hat{\sigma} \hat{\sigma} \int \mathrm{d}^{2} z_{T}[\boldsymbol{F}_{q q}^{1}\left(x_{1}, x_{2}, z_{T}\right) \boldsymbol{F}_{\bar{q} \bar{q}}^{1}\left(x_{3}, x_{4}, z_{T}\right) S^{11}\left(z_{T}\right)+ \\
&\left.\boldsymbol{F}_{q q}^{T}\left(x_{1}, x_{2}, z_{T}\right) \boldsymbol{F}_{\bar{q} \bar{q}}^{T}\left(x_{3}, x_{4}, z_{T}\right) S^{T T}\left(z_{T}\right)+\ldots\right]
\end{aligned}
$$

- Soft radiation resolves large $z_{T} \sim 1 / \Lambda_{\mathrm{QCD}}$ separation

Soft Gluon Emissions

$$
\begin{aligned}
& \boldsymbol{\sigma} \sim \hat{\sigma} \hat{\sigma} \int \mathrm{d}^{2} z_{T} {\left[\boldsymbol{F}_{q q}^{1}\left(x_{1}, x_{2}, z_{T}\right) \boldsymbol{F}_{\bar{q} \bar{q}}^{1}\left(x_{3}, x_{4}, z_{T}\right) S^{11}\left(z_{T}\right)+\right.} \\
&\left.\boldsymbol{F}_{q q}^{T}\left(x_{1}, x_{2}, z_{T}\right) \boldsymbol{F}_{\bar{q} \bar{q}}^{T}\left(x_{3}, x_{4}, z_{T}\right) S^{T T}\left(z_{T}\right)+\ldots\right]
\end{aligned}
$$

- Soft radiation resolves large $z_{T} \sim 1 / \Lambda_{\mathrm{QCD}}$ separation
- Soft gluon emissions summed in eikonal Wilson lines S_{n} and $S_{\bar{n}}$

$$
\begin{align*}
S^{11}\left(z_{T}\right) & =\langle\mathbf{0}| \operatorname{tr}\left[S_{\bar{n}}^{\dagger} \boldsymbol{S}_{\boldsymbol{n}} \boldsymbol{S}_{\boldsymbol{n}}^{\dagger} \boldsymbol{S}_{\bar{n}}\right](\mathbf{0}) \operatorname{tr}\left[\boldsymbol{S}_{\bar{n}}^{\dagger} \boldsymbol{S}_{\boldsymbol{n}} \boldsymbol{S}_{\boldsymbol{n}}^{\dagger} \boldsymbol{S}_{\bar{n}}\right]\left(z_{T}\right)|\mathbf{0}\rangle=\operatorname{tr}[\mathbf{1}]^{2}=\boldsymbol{N}_{\boldsymbol{c}}^{2} \\
S^{T T}\left(z_{T}\right) & =\langle\mathbf{0}| \operatorname{tr}\left[T^{A} \boldsymbol{S}_{\bar{n}}^{\dagger} \boldsymbol{S}_{\boldsymbol{n}} T^{B} \boldsymbol{S}_{\boldsymbol{n}}^{\dagger} \boldsymbol{S}_{\bar{n}}\right](\mathbf{0}) \operatorname{tr}\left[T^{A} \boldsymbol{S}_{\bar{n}}^{\dagger} \boldsymbol{S}_{\boldsymbol{n}} T^{B} \boldsymbol{S}_{\boldsymbol{n}}^{\dagger} \boldsymbol{S}_{\bar{n}}\right]\left(\boldsymbol{z}_{\boldsymbol{T}}\right)|\mathbf{0}\rangle
\end{align*}
$$

Double PDF Evolution

[Manohar, WW]

$$
\gamma_{\mu}^{F^{1}}=\frac{\alpha_{s} C_{F}}{\pi} P_{q q}\left(x_{1}\right) \delta\left(1-x_{2}\right)
$$

- $+\left(x_{1} \leftrightarrow x_{2}\right)$ and mixing contributions not included
- $\boldsymbol{F}_{q q}^{1}$ has the usual splitting function evolution

Double PDF Evolution

[Manohar, WW]

$\gamma_{\mu}^{F^{T}}+\frac{1}{2} \gamma_{\mu}^{S^{T}}=\frac{\alpha_{s}}{\pi}\left[\left(C_{F}-\frac{1}{2} C_{A}\right) P_{q q}\left(x_{1}\right)+C_{A}\left(\frac{3}{4}-\ln \frac{p_{1}^{-}}{\mu}\right) \delta\left(1-x_{1}\right)\right] \delta\left(1-x_{2}\right)$
$-+\left(x_{1} \leftrightarrow x_{2}\right)$ and mixing contributions not included

- Rapidity divergences require extra regulator, use [Chiu, Jain, Neill, Rothstein]
- $F_{q q}^{T}$ has color factor $C_{F}-\frac{1}{2} C_{A}=-1 / 6 \rightarrow$ "reverse" evolution

Double PDF Evolution

[Manohar, WW]

$-+\left(x_{1} \leftrightarrow x_{2}\right)$ and mixing contributions not included

- Rapidity divergences require extra regulator, use [Chiu, Jain, Neill, Rothstein]
- $F_{q q}^{T}$ has color factor $C_{F}-\frac{1}{2} C_{A}=-1 / 6 \rightarrow$ "reverse" evolution
- Remaining terms affect overall normalization \rightarrow Sudakov suppression:

$$
U_{\mu}(\Lambda, Q)=\exp \left[-\frac{\alpha_{s} C_{A}}{\pi}\left(\frac{1}{2} \ln ^{2} \frac{Q^{2}}{\Lambda^{2}}-\frac{3}{2} \ln \frac{Q^{2}}{\Lambda^{2}}\right)\right]
$$

Numerical Results for Color Correlations

- The reverse evolution in x is shown for a sample PDF

Numerical Results for Color Correlations

- The reverse evolution in x is shown for a sample PDF
- Sudakov double logarithmic suppression \tilde{U}_{μ} and Rapidity single logarithmic enhancement U_{ν}
- Mixing with single PDFs generates color correlations and is not included

Conclusions

- Double parton scattering has been observed
- Higher twist but important for e.g. light Higgs
- Approximate description $\sigma \sim \sigma_{1} \sigma_{2} / \sigma_{\text {eff }}$
- Our QCD analysis:
- Full factorization analysis of cross section
- Field-theoretic definition of double PDF \rightarrow derive evolution
- Color correlations and interferences are Sudakov suppressed

Conclusions

- Double parton scattering has been observed
- Higher twist but important for e.g. light Higgs
- Approximate description $\sigma \sim \sigma_{1} \sigma_{2} / \sigma_{\text {eff }}$
- Our QCD analysis:
- Full factorization analysis of cross section
- Field-theoretic definition of double PDF \rightarrow derive evolution
- Color correlations and interferences are Sudakov suppressed Thank You!

