Discovering the composite Higgs through the decay of a heavy fermion

Natascia Vignaroli Iowa State University

*a*rXiv: 1204.0468

Phenomenology Symposium, Pittsburgh

7-9 May 2012

Composite Higgs from a New Strong dynamics

SOLUTION TO THE HIERARCHY PROBLEM

Georgi, Kaplan, 1984

Higgs mass not sensitive to radiative corrections above the compositeness scale (O(TeV)) [Analogy with the PION mass in QCD]
Further protection if it is also the pGB of a global symmetry in the strong sector

 $\begin{array}{c} \textbf{STRONG EWSB}\\ \textbf{Sector}\\ \mathcal{G} \xrightarrow[\mathbf{H}]{} \mathcal{H}_1 \supset \mathcal{G}_{SM} \end{array}$

elementary/composite mixing

small rotation

light (SM) / heavy (NP) t, b, g, ... / T, B, G*, ...

Heavier particles have larger degrees of compositeness

Strong couplings among composites $g_{1*}, g_{2*}, g_{3*}, Y_* \gg g_{1}, g_{2}, g_{3}, Y$ $1 < Y_* << 4\pi$

$\mathcal{L} = \mathcal{L}_{elementary} + \mathcal{L}_{composite} + \mathcal{L}_{mixing}$

$$\mathcal{H} = (\mathbf{2}, \mathbf{2})_0 = \begin{bmatrix} \phi_0^{\dagger} & \phi^+ \\ -\phi^- & \phi_0 \end{bmatrix}$$

Single production of a heavy-bottom

Higgs production from a Singly-produced heavy-bottom

- Sizable cross section
- Dependence on few parameters: A, m_R
- Possibility to measure the λ coupling

Other interesting Heavy-quark-mediated Higgs production mechanisms:

Double production

Azatov et al. arxiv:1204.0455

Less powerful than single production for highest values of the heavy fermion mass

Single production from a heavy gluon

Carmona, Chala, Santiago arxiv:1203.1488

Very interesting channel for the discovery of a heavy gluon (arxiv:1107.4558; 1110.6058; 1110.5914)

Could be very powerful but it is much more model dependent

They do not allow for a measure of the λ coupling

Discovery analysis of the single production

Final state: $pp \rightarrow l^{\pm} + n \, jets + \not\!\!E_T$

Main backgrounds

- wwbb+jets (mainly tt+jets events)
- wbb+jets
- w+jets

We impose: $n \ge 4$, At least 2 *b*-tag

With jets and leptons satisfying the acceptance cuts:

 $p_T \ j \ge 30 \,\text{GeV} \qquad |\eta_j| \le 5 \qquad \Delta R_{jj} \ge 0.4$ $p_T \ l \ge 20 \,\text{GeV} \qquad |\eta_l| \le 2.5 \qquad \Delta R_{jl} \ge 0.4$

1) Top Reconstruction

After the neutrino reconstruction, we select among all the possible Wj combinations the one with the inv. mass closest to the top mass

q' is emitted at very high rapidity

2) Light-jet tag

The final light-jet is the jet (not coming from the top) with the highest rapidity in almost the 90% of the events

1) Top Reconstruction

After the neutrino reconstruction, we select among all the possible Wj combinations the one with the inv. mass closest to the top mass

q' is emitted at very high rapidity

2) Light-jet tag

The final light-jet is the jet (not coming from the top) with the highest rapidity in almost the 90% of the events

We select as the *hevy bottom* decay products all the final jets with the exception of the tagged light-jet and of the jet coming from the reconstructed top

1) Top Reconstruction

After the neutrino reconstruction, we select among all the possible Wj combinations the one with the inv. mass closest to the top mass

q' is emitted at very high rapidity

1) Top Reconstruction

After the neutrino reconstruction, we select among all the possible Wj combinations the one with the inv. mass closest to the top mass

2) Light-jet tag

The final light-jet is the jet (not coming from the top) with the highest rapidity in almost the 90% of the events

We select as the *hevy bottom* decay products all the final jets with the exception of the tagged light-jet and of the jet coming from the reconstructed top

The b directy-produced from the heavybottom is harder than the b's from the Higgs

> The *Higgs* resonance is reconstructed discarding from the heavy-bottom decay products the hardest jet among them 11

Main Cuts

We exploit the signal peculiarities:

- Exchange of a heavy resonance \rightarrow energetic final state
- Final light-jet at very high rapidity

We exploit the signal peculiarities:

- Exchange of a heavy resonance \rightarrow energetic final state
- Final light-jet at very high rapidity

They will be refined in a second step for the cases of heaviest bottom-prime

LHC Discovery Reach

With 30 fb-1

 $\sqrt{s} = 8 \text{ TeV}$

with mass up to 530 (650) GeV

• Wide discovery reach

• In the case of a heavy bottom as light as ~500 GeV the 14 TeV LHC would be sensitive to the measure of the Λ coupling in basically the full range, $\Lambda > 1$, predicted by the theory

Channels of Higgs production from singly-produced heavy fermions

	Final state		Mediating heavy fermion		light for
	${f hbt+jets}$	$(W_L \text{ exchange})$	${egin{array}{c} { ilde B} \\ { ilde T} \end{array}$	$BR(\tilde{B} \to hb) \simeq 25\%$ $BR(\tilde{T} \to ht) \simeq 25\%$	composite t_R
The LHC			${ ilde T}'$	$BR(\tilde{T}' \to ht) \simeq 25\%$	composite t_R
Discovery reach					
in the plane	$\mathbf{ht}\mathbf{ar{t}}+\mathbf{jets}$	$(Z_L/h \text{ exchange})$	T	$BR(T \to ht) \simeq 50\%$	
$(\Lambda_{B}^{}, m_{B}^{})$ could be			$T_{2/3}$	$BR(T_{2/3} \to ht) \simeq 50\%$	composite t_L
directly			$ ilde{T}$	$BR(\tilde{T} \to ht) \simeq 25\%$	
translated into a			${ ilde T}'$	$BR(\tilde{T}' \to ht) \simeq 25\%$	composite t_R
reach in the					
plane (Λ_{T}, m_{T})	$\mathbf{h}\mathbf{b}\mathbf{ar{b}}+\mathbf{jets}$	$(Z_L/h \text{ exchange})$	$ ilde{B}$	$BR(\tilde{B} \to hb) \simeq 25\%$	composite t_R
			${ ilde B}'$	$BR(\tilde{B}' \to hb) \simeq 50\%$	composite t_R

In the TS10. Similar contributions are expected in different CHM with custodial symmetry

 \bullet Comparative analyses of these channels, by measuring different λ couplings, could shed light on the theory and on the EWSB mechanism

Conclusions

The Higgs production from a singly-produced heavy fermion is a powerful channel to **TEST the Higgs properties and understand its nature** (An analysis of the strong scattering of Higgs and W_L/Z_L would require for this a much larger amount of integrated luminosity, about 300 fb-1 at 14 TeV LHC [arxiv:1002.1011])

Also promising for the **DISCOVERY of the heavy fermion**

Important to shed light on the theory behind the EWSB mechanism, since it allows the measurement of the λ coupling among SM fermions, heavy fermions and electroweak bosons

Extra Slides

Search for down-type fourth generation quarks arxiv:1202.6540

 $BR(b' \to Wt) = 1$ $m_{b'} > 480 \text{ GeV} [95\% \text{ C.L.}]$

 $BR(b' \rightarrow Wt) = 0.5$ $m_{b'} \gtrsim 420 \text{ GeV} [95\% \text{ C.L.}]$

PARTIAL COMPOSITENESSELEMENTARY
Sector
$$\Lambda_{UV}$$
Linear coupling between
SM fermions and
composite operators:
 $(D.B. Kaplan, Nucl. Phys. B 365, 259 (1991)]$ STRONG
Sector $(D.B. Kaplan, Nucl. Phys. B 365, 259 (1991)]$ elementary/composite mixing $\Lambda < \Lambda_{comp} < \Lambda_{UV}$ $\mathcal{L}_{mix} = \sum_{n} \Delta_n (\bar{\psi}\chi_n + h.c.)$ $\mathcal{L}_{mix} = \sum_{n} \Delta_n (\bar{\psi}\chi_n + h.c.)$ Two-Site
modelst, b, ... $|light\rangle = \cos \varphi |\psi\rangle + \sin \varphi |\chi\rangle$ Δ

T, B, ...
$$\int |heavy\rangle = -\sin \varphi |\psi\rangle + \cos \varphi |\chi\rangle \qquad \tan \varphi = \frac{\Delta}{m_*}$$

Heavier particles have larger degrees of compositeness

LHC Discovery Reach

 $\lambda = 3$

$$\begin{array}{l} {\rm m_B} = 400 \; {\rm GeV} & {\rm 8} \\ \int {\cal L} \simeq 14 \; fb^{-1} & S/B \simeq 5.6 \end{array} \\ {\rm m_B} = 600 \; {\rm GeV} \\ \int {\cal L} \simeq 50 \; fb^{-1} & S/B \simeq 4.6 \\ {\rm m_B} = 800 \; {\rm GeV} \\ \int {\cal L} \simeq 340 \; fb^{-1} & S/B \simeq 1.5 \end{array}$$

m_B =400 GeV 14 TeV $\int \mathcal{L} \simeq 1.5 \ fb^{-1} \qquad S/B \simeq 6.1$ m_B= 600 GeV $\int \mathcal{L} \simeq 4.8 \ fb^{-1} \qquad S/B \simeq 6.0$ m_{_R}= 800 GeV $\int \mathcal{L} \simeq 23 \ fb^{-1} \qquad S/B \simeq 2.4$ m_{_R}= 1000 GeV $\int \mathcal{L} \simeq 78 \ fb^{-1} \qquad S/B \simeq 2.1$ m_e= 1200 GeV $\int \mathcal{L} \simeq 260 \ fb^{-1} \quad S/B \simeq 1.2$

EWPT

$$\rho = \frac{M_W^2}{M_Z^2 \cos \theta_W^2} = 1 \quad \text{[tree level]} \qquad \Delta \rho \propto (v/f)^2 \quad \text{[loop]}$$

Custodial Symmetry in the Strong Sector:

•

$$SU(2)_L \times SU(2)_R \times U(1)_X \to SU(2)_V \times U(1)_X$$

• $Zb_L \overline{b}_L o$ Protection from custodial symmetry subgroup:

[Agashe, DaRold, Contino, Pomarol, PLB 641 (2006) 62]

$$g_{Lb}^{CAT}|_{tree} = \left(Q_{3L} - Q \sin^{2} \theta_{w}\right)$$

$$\mathbf{U}(1)_{\mathbf{V}} \times \mathbf{P}_{\mathbf{LR}}$$

$$SU(2)_{L} \leftrightarrow SU(2)_{R}$$

$$inv \rightarrow T_{L} = T_{R}, \ T_{3L} = T_{3R}$$

$$P_{\mathbf{C}}$$

$$|T_{L} \ T_{R}; \ T_{3L} \ T_{3R}\rangle \rightarrow |T_{L} \ T_{R}; \ -T_{3L} \ -T_{3R}\rangle$$

$$SO(3) \text{ vectors: } P_{C} = diag(1, -1, -1)$$

$$inv \rightarrow T_{3L} = T_{3R} = 0$$

 SM_{\perp} (0 0 2 0)

We derive a simple Two-Site Model (low-energy limit of MCHM10) which incorporates a custodial symmetry and a P_{LR} parity: TS10

$$SO(5)xU(1)_x \rightarrow SO(4)xU(1)_x$$
TS-10

$$Q_{2/3} = \begin{bmatrix} T & T_{5/3} \\ B & T_{2/3} \end{bmatrix} = (2,2)_{2/3}$$

$$\tilde{\mathcal{Q}}_{2/3} = \begin{pmatrix} \tilde{T}_{5/3} \\ \tilde{T} \\ \tilde{B} \end{pmatrix} = (1,3)_{2/3} , \ \mathcal{Q'}_{2/3} = \begin{pmatrix} T'_{5/3} \\ T' \\ B' \end{pmatrix} = (3,1)_{2/3}$$

$$\mathcal{L}_{mix} = -\Delta_{L1}\bar{q}_L(T,B) - \Delta_{R1}\bar{t}_R\tilde{T} - \Delta_{R2}\bar{b}_R\tilde{B} + h.c.$$

$$m_t = \frac{v}{\sqrt{2}} Y_* s_1 s_R \quad m_b = \frac{v}{\sqrt{2}} Y_* s_1 s_{bR} , \quad s_1 = \frac{\Delta_{L1}}{M'_Q} \ s_R = \frac{\Delta_{R1}}{M_{\tilde{T}}} \ s_{bR} = \frac{\Delta_{R2}}{M_{\tilde{B}}}$$

$$m_b \ll m_t \longrightarrow s_{bR} \ll s_R$$

 b_R almost fully elementary