Can the scale-invariant NMSSM Naturally give 125 GeV Higgs?

Yanou Cui

University of Maryland

with Kaustubh Agashe and Roberto Franceschini (Work in progress)

PHENO Symposium, Pittsburgh, May 7, 2012

Introduction: Naturalness for SUSY Higgs

- Piggs in NMSSM: $m_h \approx 125 \text{GeV}$, GUT, LEP bound, tuning
 - Pull-down Region
 - Push-up Region

What can we learn if $m_h \approx 125 \text{GeV}$?

Recent reports from ATLAS and CMS collaborations: First hints for Higgs at LHC with $m_h \approx 125 \text{GeV}$

If there is a $m_h \approx 125 \text{GeV}$, further implication for underlying new physics?

• A pure SM Higgs?

- Wide mass range can be accommodated (including 125GeV) by varying Higgs quartic coupling $\lambda = \frac{m_h}{v_{EW}}$; But well-known problem: **quadratic divergence of radiative correction to** $m_h \Rightarrow$ significant fine-tuning related to gauge hierarchy M_{pl}/M_{EW} ... A SUSY Higgs? – supersymmetry: elegant solution to cancel quadratic divergence in δm²_h
 But in MSSM m_h is "restricted" to be light at tree-level:

$$m_h^2 \approx m_Z^2 \cos^2 2\beta + \frac{3}{(4\Pi)^2} \frac{m_t^4}{v^2} \left[\ln \frac{m_t^2}{m_t^2} + \frac{X_t^2}{m_t^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2} \right) \right]$$

where $X_t = A_t - \mu \cos \beta$, $m_h^{\text{tree}} = m_Z \cos 2\beta \lesssim 90 \text{GeV}$, Get to 125GeV? Large loop correction needed:

$$\bigcirc X_t \sim 0, m_{\tilde{t}} \sim 5 - 10 \text{TeV}$$

2 Maximal $m_{\tilde{t}}$ mixing, large $X_t \approx \sqrt{6}m_{\tilde{t}} \gtrsim 1.5 \text{TeV}$

- both reintroduce finetuning through $\delta m_{H_u}^2$ (Draper, Meade, Reece and Shih *arxiv: 1112.3068*, Hall, Pinner and Ruderman *arxiv: 1112.2703...*)
- \Rightarrow 125GeV Higgs in MSSM betray Naturalness!

Does this mean 125GeV Higgs threatens natural SUSY "in general"?

- No! That's only for MSSM = **Minimal** supersymmetric SM. Non-minimal SUSY models, with extensions?...
- Theoretical appeal of SUSY: worth giving a harder try...

Interest of our work:

?Natural? in all aspects to get 125GeV Higgs in a minimal, well-motivated extension of MSSM: scale-invariant NMSSM
 Natural: no EW tuning (m_Z, m_h), no tuning in model parameters

 Existing works for 125GeV Higgs in scale-invariant NMSSM: pick benchmark points from numerical scan over all parameters

Ellwanger arXiv:1112.3548, Kang, Li and Li arxiv: 1201.5305...

- 'black-box'-like, hard to see hint for underlying UV physics, hidden new source of tuning...
- **Our goal:** More analytic, systematic approach, clearer view

Separate discussions for "**pushup**" and "**pulldown**" regions, different cases: with small *A*-terms for singlet (favors gauge mediation) or moderate *A*-terms (favors gravity/anomaly mediation), preserve perturbativity up to GUT scale or accept lower Landau pole

 \Rightarrow hint, guidelines for viable UV model

Review of Higgs sector in Scale Invariant NMSSM

Scale invariant NMSSM:

Simple extension of MSSM by adding a singlet chiral superfield *S* with coupling λSH_uH_d in superpotential

- Generates μ -term when $\langle S \rangle \neq$ 0– a neat solution for μ -problem, esp. for gauge mediation
- Generates extra quartic coupling λ²|H_uH_d|² ⇒ potential of raising m_h with moderate λ
- Scale invariant: no dimensionful terms in superpotential (Z₃ protected)– do not reintroduce μ-term type problem

$$\begin{split} \mathcal{W}_{\text{NMSSM}} &= \lambda S H_u H_d + \frac{\kappa}{3} S^3 \\ \mathcal{V}_{\text{soft}} &= m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + \lambda A_\lambda H_u H_d S + \frac{1}{3} \kappa A_\kappa S^3 \end{split}$$

Mass matrix for CP even scalar sector \mathcal{M}_h^2 :

$$\begin{pmatrix} \lambda^2 v^2 \sin^2 2\beta + m_Z^2 \cos^2 2\beta & 2rv^2 \cot 2\beta & 2\lambda^2 sv - 2v^2 R \\ \cdot & -2v^2 r + \frac{2\lambda \kappa s^2 + 2A_\lambda s}{\sin 2\beta} & -2Rv \cot 2\beta \\ \cdot & \cdot & \kappa s(4\kappa s + A_\kappa) + \frac{v^2}{s} A_\lambda \lambda \sin 2\beta \end{pmatrix}$$

where
$$r \equiv \left(\frac{\lambda^2}{2} - \frac{M_Z^2}{v^2}\right) \sin^2 2\beta$$
, $R = \frac{1}{v}\lambda(\kappa s + A_\lambda) \sin 2\beta$
– Higgs related,

Mass matrix for CP odd scalar sector \mathcal{M}^2_A :

$$\begin{pmatrix} \frac{2\lambda s(A_{\lambda}+\kappa s)}{\sin 2\beta} & \lambda v(A_{\lambda}-2\kappa s) \\ \cdot & \frac{\lambda v^2(A_{\lambda}+4\kappa s)\sin 2\beta}{2s}-3\kappa A_{\kappa}s \end{pmatrix}$$

– Provide additional bound from Υ decay etc.

Higgs mass in NMSSM:

$$m_h^2(NMSSM) = (M_H^2)_{11} + \delta m_{mix}^2 + \delta m_{loop}^2$$

where $(M_H^2)_{11} = \lambda^2 v^2 \sin^2 2\beta + m_Z^2 \cos^2 2\beta$ -maximized at low $\tan \beta$, δm_{mix}^2 is shift due to mixing, δm_{loop}^2 is loop correction dominated by stop. :

- **Pull-down** region: $\delta m_{\text{mix}}^2 < 0$, when $(M_H^2)_{11} < (M_H^2)_{33}$, i.e. heavier singlet sector
- **Push-up** region: $\delta m_{\text{mix}}^2 > 0$, when $(M_H^2)_{11} > (M_H^2)_{33}$, i.e. lighter singlet sector

Insist on "electroweak naturalness":

 $\mu \lesssim 200 \text{GeV}, m_{\tilde{t}} \lesssim 500 \text{GeV} \Rightarrow \text{Require } m_{\tilde{t}} \text{ at natural value,}$ focus on (major) contribution coming from $(M_H^2)_{11} + \delta m_{\text{mix}}^2$

Overview: 125GeV vs. tuning NMSSM parameters

 $m_h \approx 125 \text{GeV} + \text{Other constraints/preference:}$

- LEP bound: chargino bound $\Rightarrow \mu \gtrsim 105$ GeV; scalar with mass $\ll 115$ GeV has $g_{ZZS} \lesssim 0.1 g_{ZZh}(SM)$...
- Perturbativity up to GUT scale: $\lambda \lesssim 0.7$ for $\kappa \approx 0$

Combining these considerations:

specific tuning of model parameters required in NMSSM.

Quantification of fine-tuning – sensitivity measure:

- Electroweak naturalness: $\Delta_{EW} = \max |\frac{\partial \log m_h^2(m_Z^2)}{\partial \log X_i}|$, natural: $\Delta_{EW} \lesssim 5$ (Barbieri, Giudice 1987)
- New type of naturalness: $\Delta_{NMSSM} = \max |\frac{\partial \log \delta m_{mix}^2}{\partial \log X_i}|$ where $\delta m_{mix}^2 \equiv m_h^2$ (tree) $(M_H^2)_{11}$, natural: $\Delta_{NMSSM} \lesssim 5$

Our finding: $\Delta_{NMSSM} \gtrsim 5$ (with moderate A_{λ}, A_{κ}) or accept Landau pole below GUT scale...

Analytic analysis: clear view before numerics

Recall \mathcal{M}_{h}^{2} in basis of (h, H, S) where $\langle h \rangle = v_{EW}, \langle H \rangle = 0$:

$$\begin{pmatrix} \lambda^2 v^2 \sin^2 2\beta + m_Z^2 \cos^2 2\beta & 2rv^2 \cot 2\beta & 2\lambda^2 sv - 2v^2 R \\ \cdot & -2v^2 r + \frac{2\lambda\kappa s^2 + 2A_\lambda s}{\sin 2\beta} & -2Rv \cot 2\beta \\ \cdot & \cdot & \kappa s(4\kappa s + A_\kappa) + \frac{v^2}{s} A_\lambda \lambda \sin 2\beta \end{pmatrix}$$

Good approximation to focus on (h, S) sub-matrix? Easier to do analytic analysis...

- "Pull-down": (M²_h)₁₁ < (M²_h)₃₃. In case of small A_λ, A_κ,
 ⇒ λν < 2κs, θ_{12,23} ~ ^{λν}/_{2κs} cos 2β/sin² 2β</sub>θ₁₃ ≪ θ₁₃, can safely decouple H for m_h consideration
- "**Push-up**": $(M_h^2)_{11} > (M_h^2)_{33}$. In case of small A_{λ}, A_{κ} , $\Rightarrow \lambda v > 2\kappa s, \theta_{12,23} \sim \frac{\cos 2\beta}{\sin^2 2\beta} \theta_{13}$, can safely decouple Hwhen $\tan \beta \approx 1$

Pull-down Region

Pull-down Region

Simplified mass matrix:

$$\mathcal{M}^{2} = \begin{pmatrix} \lambda^{2} v^{2} \sin^{2} 2\beta + m_{Z}^{2} \cos^{2} 2\beta & 2\lambda^{2} s v - (2\lambda \kappa s v + \lambda A_{\lambda} v) \sin 2\beta \\ \cdot & 4\kappa^{2} s^{2} + A_{\kappa} \kappa s + \frac{v^{2}}{2s} A_{\lambda} \lambda \sin 2\beta \end{pmatrix}$$

 \Rightarrow Lighter mass eigenstate as SM Higgs: $ho \equiv rac{\kappa}{\lambda}$

$$m_{h}^{2}(\text{tree}) \approx m_{Z}^{2} \cos^{2} 2\beta + \lambda^{2} v^{2} \sin^{2} 2\beta - \lambda^{2} v^{2} \frac{\left[\sin 2\beta \left(1 + \frac{A_{\lambda}}{2\kappa_{s}}\right) - \frac{1}{\rho}\right]^{2}}{1 + \frac{A_{\kappa}}{4\kappa_{s}} + \frac{A_{\lambda} \sin 2\beta v^{2}}{8\kappa\rho s^{3}}}$$

In limit of $A_{\lambda}, A_{\kappa} \rightarrow 0$ (as expected in GMSB models):

$$m_h^2(\text{tree}) \approx m_Z^2 \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta - \lambda^2 v^2 \left(\sin 2\beta - \frac{1}{\rho}\right)^2$$

- Preserving GUT perturbativity: $\lambda \leq 0.7$, tan $\beta \gtrsim 1.5$, m_h (tree)^{max} ≈ 118 GeV < 125GeV!!
- Need loop contribution: **Electroweak naturalness** $m_{\tilde{t}} \leq 500 \text{GeV} \Rightarrow m_h (\text{tree})^{\text{need}} \gtrsim 110 \text{GeV}$

Pull-down Region

Tuning Vs. GUT

Tight space between m_h^2 (tree)^{max} and m_h^2 (tree)^{need} $\Rightarrow \delta m_h^2$ (mix) $\rightarrow 0$, fine cancelation between model parameters in NMSSM

•
$$A_{\lambda}, A_{\kappa} \to 0$$
: $\delta m_{h}^{2}(\text{mix}) = -\lambda^{2} v^{2} \left(\sin 2\beta - \frac{1}{\rho} \right)^{2}$
 $\Rightarrow \text{ tune: } \lambda - \kappa \sin 2\beta \approx 0 \Rightarrow \kappa \sim 0.6$
 $\Delta_{NMSSM} \sim |\frac{\partial \log \delta m_{\text{mix}}^{2}}{\partial \log \lambda}| > 5, \text{ i.e. worse than 20\% tuning}$

However, $\lambda \approx 0.7, \kappa \approx 0.6 \Rightarrow$ perturbativity breaks well below GUT scale!

 \Rightarrow In the limit of small A_{λ}, A_{κ} (expected in GMSB), NMSSM can not simultaneously preserve GUT and accommodate 125GeV Higgs, even with tuning!

Pull-down Region

- At least $A_{\lambda} \neq 0$: requiring $\lambda \leq 0.7$ for GUT, still need tuning $\delta m_h^2(\text{mix}) \to 0$, now: $\delta m_h^2(\text{mix}) = -\lambda^2 v^2 \frac{\left[\sin 2\beta \left(1 + \frac{A_{\lambda}}{2\kappa s}\right) \frac{1}{\rho}\right]^2}{1 + \frac{A_{\kappa}}{4\kappa s} + \frac{A_{\lambda} \sin 2\beta v^2}{8\kappa \rho s^3}}$, tune: $(\lambda \kappa \sin 2\beta)s A_{\lambda} \approx 0$
 - Allow $\kappa \ll \lambda$, can preserve GUT perturbativity
 - Worse than 20% tuning persists: $A_{\lambda} 2\mu \approx 0$

Other option: Give up (conventional) GUT, accept lower Landau pole: $\lambda \gtrsim$ 0.7, tuning typically alleviated

Higgs in NMSSM: $m_h \approx 125 \text{GeV}$, GUT, LEP bound, tuning 00000000

Conclusions

Pull-down Region

Numerical results for Pull-down region

Figure: Allowed regions for "pull-down"scenario: yellow region allowed by vacuum condition and CP odd scalar bound, green band gives 110 - 125GeV Higgs. Pink lines indicates tuning level Δ_{NMSSM} Left: small A_{λ}, A_{κ} ; **Right:** large A_{λ}

Push-up Region

Simplified mass matrix: taking $\tan \beta = 1$ to safely decouple *H*

$$\mathcal{M}^{2} = \begin{pmatrix} \lambda^{2} \boldsymbol{v}^{2} & 2\lambda^{2} \boldsymbol{s} \boldsymbol{v} - (2\lambda\kappa \boldsymbol{s} \boldsymbol{v} + \lambda \boldsymbol{A}_{\lambda} \boldsymbol{v}) \\ \cdot & 4\kappa^{2} \boldsymbol{s}^{2} + \boldsymbol{A}_{\kappa} \kappa \boldsymbol{s} + \frac{\boldsymbol{v}^{2}}{2s} \boldsymbol{A}_{\lambda} \lambda \end{pmatrix}$$

Can "push-up" do better than "pull-down"? naturally get $m_h \approx 125 \text{GeV}$ and preserve GUT?

- Hope: mixing now gives extra "increase" in m_h , may alleviate tension between $\lambda \leq 0.7$ and $m_h \approx 125 \text{GeV}$
- New constraint now: a singlet-like scalar m_S < m_h, LEP constraint on Z-coupling with scalar lighter than 115GeV ⇒ limited "push-up" effect allowed from mixing

Simplified step-function for LEP bound on mixing as function of light scalar mass: (hep-ex/0602042)

$\sin^2 \theta \leq$	0.01,	$0 GeV < m_2 < 80 GeV$
	0.1,	$\text{80GeV} < m_2 < 100 \text{GeV}$
	0.4,	$100 \mathrm{GeV} < m_2 < 110 \mathrm{GeV}$

In region where $\sin^2 \theta \lesssim 0.1, m_2 < 100 \text{GeV}, \\ \tan 2\theta = 2M_{13}/(M_{11} - M_{33}) \ll 1.$

Expand the mass eigenvalues w.r.t. θ :

$$\begin{array}{rcl} m_1^2 &=& M_{11} + \theta^2 (M_{11} - M_{33}) \\ m_2^2 &=& M_{33} - \theta^2 (M_{11} - M_{33}) \end{array}$$

⇒ Bounds on matrix elements and degree of tuning defined by $\Delta_{NMSSM} = \max |\frac{\partial \log \delta m_{mix}^2}{\partial \log X_i}|$:

- Region-I: $\theta^2 = 0.1, 80 < m_2 < 100, m_1 = 110$ $108^2 \leq M_{11} \leq 109^2, 83 \leq M_{33} \leq 101^2, 13^2 \leq M_{13} \leq 21^2 \Rightarrow \sim 4\%$ tuning.
- Region-II: $\theta^2 = 0.01, 0 < m_2 < 80, m_1 = 110$ $109.5^2 \leq M_{11} \leq 109.7^2, 0 \leq M_{33} \leq 80^2, 7.5^2 \leq M_{13} \leq 11^2$ $\Rightarrow < 1\%$ tuning.

– Worse tuning than "pull-down" case because of LEP bound!

Next: check implication on model parameters $\lambda, \kappa, A_{\kappa}, A_{\lambda}$

 M_{11} lies in narrow region $108^2 - 110^2 \Rightarrow \lambda \approx 0.6$

• Case-I: $A_{\kappa} = 0, A_{\lambda} = 0$

Bound on $M_{13} \Rightarrow \lambda \approx 0.6 \Rightarrow \kappa \approx \lambda \approx 0.6$ $\Rightarrow M_{33} = 4\kappa^2 s^2 > M_{11}!$ contradicts pushup condition $M_{11} > M_{33}$. This region does not work in any way.

• Case-II: $A_{\kappa} \neq 0, A_{\lambda} = 0$ Still pood tuning $\lambda = 0$

Still need tuning $\lambda \approx \kappa$, pushup condition and M_{33} bound can be accommodated by choosing proper value of $A_{\kappa} < 0$. But not viable if we require perturbativity up to GUT scale because $\kappa \approx \lambda \approx 0.6$...

• Case-III: $A_{\kappa} < 0$ and $A_{\lambda} > 0$

3-parameter tuning $(\lambda - \kappa)s - A_{\lambda}/2 \approx 0$. Assuming $\kappa \ll \lambda$, tuning $A_{\lambda} - 2\mu \approx 0$, this case viable, preserve perturbativity up to GUT scale with < 5% tuning.

Higgs in NMSSM: $m_h \approx 125 \text{GeV}$, GUT, LEP bound, tuning $\circ \circ \circ \circ \circ \circ \circ \circ \bullet$

Conclusions

Push-up Region

Numeric results for "push-up" scenario

Figure: Allowed regions for "push-up"scenario: yellow region allowed by vacuum condition and CP odd scalar bound, green band gives 110 - 125GeV Higgs, cyan region: also allowed by LEP. Pink lines indicates tuning level Δ_{NMSSM} . Left: small A_{λ} , $A_{\kappa} < 0$; Right: large $A_{\lambda} > 0$, $A_{\kappa} < 0$

Conclusions

We study the implication of a possible 125GeV Higgs on scale-invariant NMSSM; analytic approach \Rightarrow clearer picture:

- Preserving EW naturalness, m_h ≈ 125GeV typically requires tuning/fine cancelation among model parameters in NMSSM to get δm²_h(mix) ≪ m²_h Pressure of tuning from: GUT perturbativity or LEP bounds
- Sizeable A_λ, A_κ are necessary to get m_h ≈ 125GeV and preserve perturbativity up to GUT scale, yet still in tuned way
- The only region for good naturalness: give up (conventional) GUT, allow low Landau pole

May provide guidelines for viable UV models that have NMSSM as EFT...

Backup Slides

Pull-down with no tuning

Other option: Give up GUT, accept lower Landau pole: $\lambda \gtrsim 0.7$, tuning typically alleviated (UV: Fat Higgs models...) When $A_{\lambda}, A_{\kappa} \to 0$ rewrite as m_h^2 (tree) $\approx m_Z^2 \cos^2 2\beta - \lambda^2 v^2 \left(\frac{1}{\rho^2} - \frac{2}{\rho} \sin 2\beta\right) (\rho \equiv \kappa/\lambda)$

- High Landau Pole 10TeV ≤ Λ < M_{GUT}: κ < λ/(sin 2β), may cause another type of tuning when taking ρ ≪ 1, fine cancelation between two terms inside (...)
- Low Landau Pole $\Lambda \lesssim 10$ TeV: $\kappa > \lambda/(\sin 2\beta)$, natural in all aspects

Pushup Region-III: larger mixing region where $\tan 2\theta > 1$, now expand w.r.t $\epsilon = (M_{11} - M_{33})/(2M_{13}) < 1$:

$$m_1^2 = \frac{1}{2} \left[(1 + \frac{1}{\epsilon}) M_{11} + (1 - \epsilon - \frac{1}{\epsilon}) M_{33} \right]$$

$$m_2^2 = \frac{1}{2} \left[(1 - \frac{1}{\epsilon}) M_{11} + (1 + \epsilon + \frac{1}{\epsilon}) M_{33} \right]$$

 \Rightarrow Bounds on matrix elements:

• Region-III: $\sin^2 \theta \approx 0.4$, $100 \leq m_2 \leq 110$, $m_1 = 110$ $107^2 \leq M_{11} \leq 111^2$, $103^2 \leq M_{33} \leq 109^2$, $33^2 \leq M_{13} \leq 46^2$ Comments for large mixing case:

Large mass of lighter mass eigenstate as required by LEP bound ⇒ Large mixing is mostly due to near-degeneracy M₁₁ ≈ M₃₃-a new type of tuning at < 5% level

Still need 0.6 ≤ λ ≤ 0.65, small M₁₃ ⇒ in case of A_λ = A_κ = 0, 0.55 ≤ κ ≤ 0.6, violates pushup condition. Discussion about 3 cases of possible A-terms mostly follows that for small mixing case...