

Search for contact interactions in the dimuon final states at CMS

Sowjanya Gollapinni Wayne State University (on behalf of CMS Collaboration)

Phenomenology 2012 Symposium University of Pittsburgh 7 - 9 May, 2012

Why look beyond the SM ?

 \rightarrow Standard model (SM) successfully predicts many fundamental processes,

BUT...

Why ONLY 3 generations?

What about masses?

Where is the Higgs boson? The hierarchy problem?

WHERE DO WE FIT IN ?

Massive neutrinos! Gravity? Dark matter?

Dark energy?

Extra dimensions? etc...

New Physics Contact Interactions — Quark compositeness 2

Contact Interactions (CI)

• New physics via CI has long history: In 1930's, Fermi's Beta decay

Similarly, new physics may exist at an energy scale Λ

- ∧ can be much higher than the achievable COM energy at the LHC
- But, its effects can be detected at energies $< \Lambda$ at the LHC

Compositeness of Quarks and Leptons

- Introducing quarks and leptons as composite objects
 the more fundamental constituents popularly called *preons*
- \rightarrow Visible only above a characteristic energy scale Λ
- \rightarrow Below Λ , preon interactions become strong and quarks appear point-like
- $\rightarrow \Lambda$ characterizes both
 - strength of the preon coupling
 - physical size of compositeness scale

Manifestation of Compositeness dimuon channel

Experimentally,

Observe excess of events in the tail of the dimuon invariant mass distribution

Lagrangian for contact interactions with dimuon final states $L_{ql} = (g_0^2 / \Lambda^2) \{ \eta_{LL} (\bar{q}_L \gamma^{\mu} q_L) (\bar{\mu}_L \gamma_{\mu} \mu_L) + \eta_{LR} (\bar{q}_L \gamma^{\mu} q_L) (\bar{\mu}_R \gamma_{\mu} \mu_R) + \eta_{RL} (\bar{u}_R \gamma^{\mu} u_R) (\bar{\mu}_L \gamma_{\mu} \mu_L) + \eta_{RL} (\bar{d}_R \gamma^{\mu} d_R) (\bar{\mu}_L \gamma_{\mu} \mu_L) + \eta_{RR} (\bar{u}_R \gamma^{\mu} u_R) (\bar{\mu}_R \gamma_{\mu} \mu_R) + \eta_{RR} (\bar{d}_R \gamma^{\mu} d_R) (\bar{\mu}_R \gamma_{\mu} \mu_R) \}$

- η = sign of the interference of new physics with the DY process (η = -1 constructive; η = +1 destructive)
- Different η_{lm} values correspond to different compositeness models with distinct Λ

The Compact Muon Solenoid (CMS) Experiment

Exploded view of the CMS detector

Previous results on Λ

For this analysis,

- \rightarrow Limits are set on the η_{μ} term in the Lagrangian
 - → Left-Left is one of the two models implemented in the Pythia monte carlo
 - → PDG limits are exclusively given for LL model

Pythia Left-Left Iso-scalar model

Compositeness scale Λ

As $\Lambda \rightarrow \infty$, distribution \rightarrow SM

Dimuon mass spectrum

Dimuon Selection

- ◆ pT > 45 GeV
- Oppositely charged
- Well isolated from muons arising from hadron decays
- Have a common vertex
- Must have tracks reconstructed both in silicon tracker and muon detector
- 3D dimuon opening angle cut to suppress cosmic-ray muons

Expected signal = (CI * Acc * QCD K * QED K) + BKG

Ε

Where

- expected signal
- CI generator level contact signal
- Acc acceptance*migration
- BKG background estimation
- QCD K QCD K-factor for NLO corrections
- QED K EW K-factor for NLO corrections

⁶ J. High Energy Physics 10 (2007)109–130

Limit setting procedure

Based on Modified frequentist technique (CLs technique)
 (A. Read, J. Phys. G: Nucl. Part. Phys. 28 (2002).)

• profile likelihood ratio as a test statistic

- Expected mean for signal events = total events (finite Λ) total events (DY)
- Expected mean for background events = total events (DY)
- \bullet Observed number of events \rightarrow CMS data
- Limits includes systematics coming from
 - integrated luminosity
 - acceptance
 - expected background (DY).

Systematics

Values quoted at $M_{\mu\mu} > 700$ GeV; $\Lambda = 13$ TeV; constructive interference

Source	Uncertainty (%)
Integrated luminosity	2.2
Acceptance	3.0
Background estimate	14.7
PDF set variation (+)	12.3
PDF set variation (-)	9.9
DY event yield	0.8
non-DY event yield	15.0
QCD k-factor	0.2

- PDFs has the largest effect on the limits
- All other sources have negligible effect on limits

95% CL Lower limits on Λ

Summary & Conclusions

COMPARISON WITH OTHER RESULTS

Source	COM (TeV)	L(fb ⁻)	Λ (Dest.) TeV	$\Lambda(\text{Const.})\text{TeV}$
CDF	1.8	O.II	2.9	4.2
ATLAS	7	I.2I	7.0	8.0
This analysis	7	5.28	9.5	13.0

- Limits significantly better than the current published limits
- With increased Collision energy (8 TeV) in 2012 at the LHC, search for this exciting possibility continues

BACK UP

Pythia Left-Left model cross-sections

Particle detection at CMS

Dimuon backgrounds I

19

Dimuon backgrounds II

COSMIC RAY MUONS

Atmospheric cosmic ray muons penetrating into the detector

- CMS well-shielded deep underground (~100m deep) (only ~1% of rate on surface of earth reach the detector)
- But, increased acceptance through the 3 access shafts of CMS
- A cosmic ray muon passing close to the detector interaction point can appear as two muons back-to-back in n, faking a dimuon event
- To suppress, select events with
 - atleast one primary vertex
 - 3D dimuon opening angle < 0.02 rad</p>

Acceptance and Mass resolution

- Reconstructed events to generated events above a mass threshold
- Includes mass resolution effects (generator masses below threshold are included in the relative yield)
- Boost due to resolution smearing significant for masses > 600 GeV/c
- Resolution smearing sensitive to the shape of cross-section for CI and DY
- 3% systematic assigned to account for differences in acceptance between CI and DY

