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Punch Line

I Lots of new physics can hide in gg → h while still appearing like a
SM Higgs

I Allowing for the Higgs to mix with a new scalar opens up a whole
new class of possible contributions

I Even if we see a cross section ∼ SM we can not assume it is a
SM Higgs

I A host of new states with masses ∼ vh could be ‘hiding’ in gluon
fusion
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Overview

I Why study gg → h?
I The Higgs Portal and Higgs Mixing
I Production of s1 and s2

I Review of gg → h in SM
I Effects New Colored States and Higgs Mixing
I Ongoing/Future Work
I Conclusions
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Why study gg → h?

I Beginning to see hints of a resonance in the γγ, WW and bb̄ GeV
decay modes

I Interpreted as SM Higgs these rates are above SM expectation
but well within 1σ

I Crucial step in this interpretation is calculating the SM Higgs
production cxn which at LHC is dominated by gluon fusion

I Relies on assumption that dominant contribution comes from top
quark loop and in particular mt only comes from EWSB

I But Yukawa couplings have yet to be measured and in addition
fermion masses are only a byproduct of the Higgs mechanism

I Thus the gluon fusion mode does not directly probe the Higgs
mechanism responsible for SU(2)L ⊗ U(1)Y → U(1)em
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Why study gg → h?

I Implies that LHC Higgs searches can be skewed by presence of
new colored particles which contribute to gg → h loop

I Excess can also be interpreted as a scalar mass eigenstate which
arises from mixing between SM Higgs and new scalar state

I Both effects can generically be part of extended color sectors, in
particular if new colored states obtain mass from new scalar vev

I This new scalar can mix with the SM Higgs through the ‘Higgs
portal’ once it obtains a vev

I We consider a broad class of new physics insertions, allowing for
‘direct’ alterations of gg → h loop, as well as new effects induced
through ‘Higgs-mixing’, to be present simultaneously
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The Higgs Portal and Higgs Mixing

I H†H is the lowest mass dimension operator in the SM which is
both gauge and Lorentz invariant

I Can combine with BSM operators of arbitrary mass dimension

5

embedded. Details of this calculation are presented in Appendix A. We summarize and conclude

in Sec. VII.

II. THE HIGGS PORTAL AND HIGGS MIXING

In this section, we review the Higgs portal as a general framework for studying the connection

between arbitrary New Physics models and Higgs physics, with a special emphasis on the resulting

e↵ect on gluon fusion.

In the SM, the Higgs field is responsible for breaking SU(2)L⇥U(1)Y gauge symmetry, resulting

in masses for the W± and Z bosons as well as masses for the chiral SM fermions. By virtue of

being the only scalar field present in the SM, the Higgs can also be used to generate H†H, which is

the lowest mass dimension operator possible in the SM which is both gauge and Lorentz invariant.

Hence, arbitrary NP operators can then be tacked on to H†H to give

Lhp � �hpONP H†H . (1)

Although ONP can be an arbitrarily high dimension operator, with an appropriate power suppres-

sion from a high NP scale ⇤NP , a generic Higgs portal term is only typically unsuppressed when

ONP itself is dimension two and gauge and Lorentz invariant, hence given by ONP ⇠ �†�, where

� is a NP scalar field. One exception is the case when a NP scalar field is a pure SM and NP gauge

singlet, but since we are focused on NP e↵ects on the gluon fusion mode of Higgs production, we

will not discuss this gauge singlet case further.

One class of NP e↵ects on gluon fusion arises from new colored states that directly enter the

gg ! h loop diagram. The direct coupling of colored states to the Higgs via Eq. (1) implies the

mass of the new state is shifted after EWSB, and as this coupling is turned o↵, the NP e↵ect

vanishes. This class of NP e↵ects is typified by models with new colored scalars, but a new fermion

with Yukawa-like couplings to the SM Higgs boson also follows this scheme, albeit not via the Higgs

portal. Although the case where the mass of the NP state arises primarily from the Higgs vev was

discussed in [8], in our more general framework the NP mass scale and the NP Higgs coupling are

independent. Our approach also has some overlap with [1, 4], which largely focused on new colored

scalars, except that [4] also considered a new vector-like fermion mixing with the top quark.

Since the NP mass scale and the NP Higgs couplings are independent in our setup, a second

broad class of NP e↵ects on gluon fusion emerges. Namely, if a NP scalar field obtains a vev to

spontaneously break a NP gauge symmetry and if a Higgs portal term is present, this NP scalar

I Will typically be suppressed by new physics scale unless
ONP ∼ Φ†Φ (or a pure NP and SM scalar singlet)

I New colored states can enter gg → h loop directly through Lhp

I Considering renormalizable interactions, only colored scalars may
contribute through Lhp

I We refer to this class of contributions as ‘direct’ NP effects
I Direct contributions may also arise from fermion mixing with SM

top quark (and/or bottom), though not through Lhp
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The Higgs Portal and Higgs Mixing

I Can also have indirect ‘Higgs-mixing’ induced contributions
I This mixing can be generated through

7

uncolored scalars which do not obtain vevs from their scalar potential. Such a scalar does not

enter the gg ! h loop, but if �hp is large and positive, the resulting Higgs portal-induced shift in

mass squared, ��hpv
2
h (vh is the Higgs vev) could drive the NP scalar to acquire a vev. Hence,

this “Portal Symmetry Breaking” class of NP models is unique because the Higgs portal coupling

is a necessary ingredient driving the NP scalar to obtain a nonzero vev. Obviously, the roles of the

NP scalar and the Higgs scalar can be reversed, whereby the Higgs portal term allows a NP scalar

vev to drive the Higgs field to obtain a negative mass squared and hence trigger EWSB. We will

pursue a study of “Portal Symmetry Breaking” phenomenology for future work.

A. New Physics Scalar – Standard Model Higgs Mixing

We briefly discuss the second class of NP e↵ects from the Higgs portal described above, e.g. a

NP scalar and the SM Higgs both obtain vevs in Eq. (1) and mix. For simplicity, we only consider

one NP scalar, but our discussion is readily generalized to multiple NP scalars. We let ONP ⇠ �†�

for a NP scalar field �, giving the perturbative expression

L � �hpH
†H�†�

⇠ �hpvhv�h�,
(2)

where we have suppressed representation indices and expanded the fields H ⇠ 1p
2
(h + vh) and

� ⇠ 1p
2
(� + v�). We remark that we have assumed the scalar potentials V (�) and V (H) are also

present and Eq. (2) is the only Lagrangian term involving both � and H. The usual stability,

triviality, and renormalizability constraints on the full scalar potential V (H)+V (�)��hp|H|2|�|2

are assumed to be satisfied and will be imposed when we consider explicit models in Secs. V and

VI. Here, since � obtains a vev, Eq. (2) leads to a mixing between the NP scalar and the SM

Higgs fields from the mass matrix

m2
scalar =

0
@ m2

h(vh(�hp)) ��hpvh(�hp)v�(�hp)

��hpvh(�hp)v�(�hp) m2
�(v�(�hp))

1
A , (3)

where the functional dependence of mh and m� on �hp is completely encapsulated by the �hp

dependence in the exact vevs vh and v�: these vevs, and hence the diagonal mass sqaured terms,

are obtained by solving the full potential V (H) + V (�)� �hp|�|2|H|2. The functional dependence

of mh and m� on their respective potential parameters can be fixed by solving the potentials

V (H) and V (�) separately, and in the limit that �hp ! 0, the exact vevs vh and v� recover their

original, unperturbed values obtained by solving V (H) and V (�) separately. This observation

I New colored states coupling to φ can now contribute to gluon
fusion regardless if they couple to the SM Higgs (h)

I Can allow for a larger class of states, including new fermions and
massive colored vectors to contribute at the renormalizable level

I There are now two physical scalars in the spectrum leading to
interesting phenomenology which has been studied previously

R. Gupta, J. Wells: 1110.0824/ Schabinger, Wells: 0509209
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The Higgs Portal and Higgs Mixing

I This mixing will lead to the scalar mass matrix

7
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I The coupled vevs depend explicitly on λhp and are found by
solving the full scalar potential including Higgs portal interaction

I Can diagonalize the mass matrix to obtain the mass eigenstates
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has important ramifications when calculating the Goldstone-Goldstone-scalar couplings, which is

discussed in Subsec. A 3.

We can readily diagonalize the symmetric mass matrix Eq. (3) to obtain the mass eigenstates

s1 = h cos ✓ � � sin ✓

s2 = h sin ✓ + � cos ✓
, (4)

with a Jacobi rotation mixing angle ✓ defined by

tan 2✓ =
�2�hpvhv�
m2

� � m2
h

. (5)

We will also need the inverse operations,

h = s1 cos ✓ + s2 sin ✓

� = �s1 sin ✓ + s2 cos ✓
. (6)

The eigenvalues of Eq. (3) are

m2
s1

=
1

2

�
m2

h + m2
�

�
�
r⇣

�m2
h + m2

�

⌘2
+ 4�2

hpv
2
hv2

� (7)

and

m2
s2

=
1

2

�
m2

h + m2
�

�
+

r⇣
�m2

h + m2
�

⌘2
+ 4�2

hpv
2
hv2

� , (8)

where we have taken ms1 < ms2 without loss of generality. As mentioned before and demonstrated

in [4, 11, 12], the mixing of the scalar states from the Higgs portal can drastically a↵ect gluon

fusion for scalar production. Moreover, the mixing is driven purely by the strength of �hp, which

is required to be real from Hermiticity but whose sign is not fixed.

B. New Physics E↵ects on Production and Decay of s1,2

We can now readily disentangle the two categories of new physics e↵ects on gluon fusion. Now,

because of h–� mixing via the Higgs portal Eq. (2), we must calculate cross sections for gg ! s1

and gg ! s2 production instead of gluon fusion production for gauge eigenstates h and �. Higgs

phenomenology in the presence of Higgs mixing has been well studied previously [11–13]. As

mentioned in Sec. I, these studies focused on hidden sector models where � does not couple to

the SM, even at 1-loop. Thus when considering gg ! s1,2 production there is no contribution

coming from the � component. This implies that the production cross section of s1 relative to

the SM is suppressed by the usual cos2 ✓ factor found in Higgs mixing. In contrast to this, in our

I We can define the Higgs-mixing angle as

8
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I We can see that λhp controls sign of θ
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Production of s1 and s2

I Now instead of h production we have s1 and s2 production,

I The amplitudes for s1,2 production can be decomposed in terms
of gauge eigenstate production as,

8

B. New Physics E↵ects on Production and Decays of s1,2

We can now readily disentangle the two categories of new physics e↵ects on gluon fusion. Now,

because of h–� mixing via the Higgs portal Eq. (2), we must calculate cross sections for gg ! s1

and gg ! s2 production instead of the gauge eigenstates h and �. In our scenario, since � couples

to a colored sector, NP contributions to gg ! s1,2 can manifest themselves through both the � and

h components of s1,2. This can lead in turn to suppression or enhancement of the production rate

relative to the SM. This also implies that partial decay widths are also a↵ected, whereas in hidden

sector models, such widths are unaltered apart from the universal cos2 ✓ suppression coming from

Higgs mixing.

From the discussion above, we can decompose the production amplitude of s1 via gluon fusion

in terms of the gauge eigenstate h and � production amplitudes as,

M(gg ! s1) = c✓ [M(gg ! h)]|mh=ms1
�s✓ [M(gg ! �)]|m�=ms1

M(gg ! s2) = s✓ [M(gg ! h)]|mh=ms2
+c✓ [M(gg ! �)]|m�=ms2

, (9)

where c✓ ⌘ cos ✓, s✓ ⌘ sin ✓ are defined by Eq. (5). In the discussion below, we presume the

matrix elements are evaluated at the appropriate scalar mass and will drop the notation above.

Hence, given the linear combination dictated by Eq. (9), we are now free to isolate the particular

contributions to gg ! h and gg ! �.

We are particularly interested in identifying, at the amplitude level, which mechanisms are

responsible for modifying gluon fusion and whether and how they can decouple. A completely

general expression for all possible NP e↵ects along these lines is cumbersome, so instead we will

write

M(gg ! s1) = c✓


M(gg ����!

scalars
h) + M(gg ������!

fermions
h) + M(gg ����!

vectors
h)

�

� s✓


M(gg ����!

scalars
�) + M(gg ������!

fermions
�) + M(gg ����!

vectors
�)

�
,

(10)

and treat each category of virtual states separately 1 Each of these categories can be further

subdivided into particles that couple solely to h, solely to �, or simultaneously to both. In the

scalar case, for example, we can write

M(gg ����!
scalars

s1) = c✓

"
P
i

M(gg �!
⌘i

h) +
P
j

M(gg �!
⌘j

h)

#

� s✓

"
P
j

M(gg �!
⌘j

�) +
P
k

M(gg �!
⌘k

�)

#
,

(11)

1 For the vector loop calculation, we implicitly assume a unitary gauge calculation where only vectors appear in the

loop. If working in Feynman gauge, the associated Goldstone and ghosts would also be part of the vector category.

I Interference effects controlled by sign sθ and hence λhp
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Production of s1 and s2

I Scalars, fermions, or vectors can contribute to loop

8
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1 For the vector loop calculation, we implicitly assume a unitary gauge calculation where only vectors appear in the
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I New states may couple to h, φ or both
I We can write the relative rate for s1 vs SM h production as,

9

where the scalars ⌘i, ⌘j , ⌘k couple only to h, both to h and �, and only to �, respectively. We can

now make definitive statements about the decoupling behavior of the scalars ⌘i, ⌘j and ⌘k. If the

masses of ⌘i (⌘k) arise solely from the vev vh (v�), then these scalars will exhibit non-decoupling

from h (�) as their masses are taken very large: if instead the masses include sources besides

the scalar vevs, then decoupling will occur. The behavior of the ⌘j states are a straightforward

combination of the previous arguments.

In the same way, we also write the fermion case,

M(gg ������!
fermions

s1) = c✓

"
P
i

M(gg �!
 i

h) +
P
j

M(gg �!
 j

h)

#

� s✓

"
P
j

M(gg �!
 j

�) +
P
k

M(gg �!
 k

�)

#
.

(12)

To be more illustrative, we can take some familiar examples to demonstrate the flexibility

of Eq. (12). In the case with Higgs mixing but no new fermions  j or  k are present, then

 i consists of the SM quarks and we get a universal c✓ suppression of the matrix element. If

instead Higgs mixing is absent and a new vector-like top partner is introduced, then c✓ = 1, s✓ = 0,

and  i includes the first five SM quarks and the two fermion mass eigenstates resulting from top

mixing. Finally, if Higgs mixing is present and new colored fermions are added that couple both

to h and � but do not mix with the SM fermions, then  i will run over the SM quarks and  j will

run over the NP colored fermions.

Lastly, we can introduce massive colored vectors, where we will only consider the case where

these vectors couple to �, giving the relatively simple expression

M(gg ����!
vectors

s1) = �s✓


M(gg �!

V
�)

�
. (13)

After the above discussion, we can now focus on a parametric understanding of how production

and decays of s1,2 are a↵ected by New Physics including direct coupling and h–� mixing. As we

have seen, performing a completely general analysis can be overly cumbersome, and so we will

assume several mild assumptions to make the analysis intuitive and tractable.

We can define the overall enhancement or suppression factor of gluon fusion production as

✏gg ⌘ |M(gg ! s1)|2����M(gg ��!
SM

h)

����
2 =

|c✓M(gg ! h) � s✓M(gg ! �)|2����M(gg ��!
SM

h)

����
2 = c2

✓ |Zggh � t✓Zgg�|2 , (14)

using Eq. (9). The complex amplitude ratios are given by

Zggh ⌘ M(gg ! h)

M(gg ��!
SM

h)
Zgg� ⌘ M(gg ! �)

M(gg ��!
SM

h)
, (15)

I Can have either suppression or enhancement relative to SM rate
in contrast to ‘standard’ Higgs-mixing scenarios
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Review of gg → h in SM

I As is well known occurs primarily through top quark loop

I The amplitude is contained by SU(3)c gauge invariance to have
the form,

13

Going back to Eq. (16) we see that the diphoton branching ratio, similar to the WW or ZZ

branching ratio in Eq. (14), is first suppressed by the c2
✓ mixing angle from Higgs portal-induced

mixing as well as the fraction of total widths �h/�s1 : moreover, the inclusion of new intermediate

states charged under U(1)em can serve to enhance or further suppress the branching ratio relative

to the Higgs branching ratio.

Finally, we can calculate the s1 branching ratio to bb or ⌧+⌧�. If Higgs mixing is present, if

� does not appreciably couple to the SM fermions, and if the SM fermions are not mixed with

NP fermions, then the same results from Eq. (14) apply, substituting ff for WW . In the general

case, however, because of the possible presence of all of these e↵ects, we obtain a similar expression

as Eq. (16) with. As an explicit case, for the bb final state, if we assume there is no mixing

involving the the SM and NP state and that � is lighter than any NP state, we find Zbb̄h = 1 and

�s1 ⌘ �s1!SM which gives,

Br(s1 ! bb̄)

Br(h ! bb̄)
= c2

✓

�h

�s1

��1 � t✓Zbb̄�

��2 , (20)

where Zbb̄� ! M(� ��!
NP

bb̄)/M(h ��!
SM

bb̄).

We note that all of these expressions can similarly be obtained for s2 decay with an appropriate

c✓ $ s✓ interchange and ms1 ! ms2 , but in addition, if ms2 > 2ms1 , there is the additional decay

mode s2 ! s1s1, which was emphasized in [12]. Also, if any of the NP or ES states are lighter

than ms1/2 or ms2/2, then additional non-standard decay modes open up. This e↵ect is manifest

in the above expressions through the ratio of total widths �h/�s1 .

III. THE gg ! h PROCESS IN SM

Here we briefly review the leading order Standard Model calculation for Higgs production via

gluon fusion. As is well known, gluon fusion predominantly arises through the top quark loop

because of the large top Yukawa coupling, depicted in Fig. 1. We again highlight the fact that

since neither the W or Z bosons couplings are probed in this production mode, large e↵ects can

be present in this loop process that strongly change Higgs production but do not a↵ect EWSB.

The amplitude for Fig. 1 is

iMab
SM = i

✓
↵s

⇡vh

◆
C(r)�ab✏1µ✏2⌫

✓
p⌫1p

µ
2 � m2

h

2
gµ⌫

◆
FSM (⌧) (21)

where C(r) is the Casimir invariant for representation r (C(r) = 1/2 for SM quarks), a and b are

color indices, p1 · p2 =
m2

h
2 for an on-shell Higgs, ⌧f ⌘ m2

h/(4m2
f ) and FSM (⌧) is the well-known

I Does not decouple in limit τ = m2
h/4m2

t → 0
I Similarly for a sequential fourth generation which leads to an

enhancement of production rate of ∼ 9
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Review of gg → h: ‘Decoupling’

I The decoupling feature of the SM amplitude is a consequence of
EWSB

I Mass in loop propagator is the same as in hff coupling
I Any other particle which obtains mass only from EWSB will have

this feature
I Typically a new state with a mass not from EWSB will decouple
I But new state may be associated with a BSM sector defined by

some scale ΛBSM

I For a renormalizable theory, we take this to be the VEV, vφ of new
scalar φ

I φ then endows new contributions to gg → s1,2 with
‘non’-decoupling property

I If vφ is ∼ vh it is possible effects will be large enough to be
observed at LHC
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Colored Scalar w/ no Higgs Mixing

I We can first consider a colored scalar with no VEV
I Has been examined in various recent studies

Dobrescu et. al: 1112.2208, Batell et. al: 1112.5180, Bai et. al: 1112.1964

I Mass shifted after EWSB
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FIG. 2. Feynman diagrams for scalar loop contributions to gg ! h. For a complex scalar one must also

include the charge conjugate of diagram (a). Need to generate the correct figures with particle

labels and subfigure labels (a) and (b).

IV. COLORED NEW PHYSICS SCALAR

In this section, we calculate the e↵ect of a colored complex scalar S propagating in the gg ! h

loop. We use the Higgs portal Eq. (2) to couple S to the SM Higgs, and we write a (positive)

tree-level mass squared for S such that SU(3) color remains unbroken and Higgs mixing is absent.

The Lagrangian involving S is

LS = |DµS|2 � m2
0S

†S � |S†S|2 � �hpS
†SH†H , (24)

where color indices have been suppressed and we assume m2
0 > 0 and  > 0 to ensure stability.

As discussed in Sec. II, �hp must be real: for positive (negative) �hp, we will get constructive

(destructive) interference with the SM loop calculation, in agreement with [1? ]. Moreover, after

EWSB, the physical scalar mass is

m2
S ⌘ m2

0 + �hpv
2
h , (25)

which implies the constraint that m2
0 > ��hpv

2
h to avoid Portal Symmetry Breaking of SU(3).

The two diagrams to calculate are shown in Fig. 2. Since S is complex, the matrix element

for Fig. 2(a) needs to be multiplied by 2 to account for the charge conjugate diagram: if S were

real, no factor of 2 is used and instead the matrix element for Fig. 2(b) must include a symmetry

factor of (1/2).

The total amplitude of the diagrams in Fig. 2 is

iMab
S = i

✓
↵s

⇡vh

◆✓
C(rS)�hpv

2
h

4m2
S

◆
�ab✏1µ✏2⌫(p

⌫
1p

µ
2 � m2

h

2
gµ⌫)FS(⌧S) , (26)

where C(rS) is the SU(3) Casimir invariant for S, ⌧S = m2
h/(4m2

S) and the loop function FS is
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0 > 0 and  > 0 to ensure stability.
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(destructive) interference with the SM loop calculation, in agreement with [1? ]. Moreover, after

EWSB, the physical scalar mass is
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0 + �hpv
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h , (25)

which implies the constraint that m2
0 > ��hpv

2
h to avoid Portal Symmetry Breaking of SU(3).

The two diagrams to calculate are shown in Fig. 2. Since S is complex, the matrix element

for Fig. 2(a) needs to be multiplied by 2 to account for the charge conjugate diagram: if S were

real, no factor of 2 is used and instead the matrix element for Fig. 2(b) must include a symmetry

factor of (1/2).

The total amplitude of the diagrams in Fig. 2 is

iMab
S = i

✓
↵s

⇡vh

◆✓
C(rS)�hpv

2
h

4m2
S

◆
�ab✏1µ✏2⌫(p

⌫
1p

µ
2 � m2

h

2
gµ⌫)FS(⌧S) , (26)

where C(rS) is the SU(3) Casimir invariant for S, ⌧S = m2
h/(4m2

S) and the loop function FS is

I The amplitude is of the same form as SM
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0 + �hpv
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h , (25)

which implies the constraint that m2
0 > ��hpv

2
h to avoid Portal Symmetry Breaking of SU(3).

The two diagrams to calculate are shown in Fig. 2. Since S is complex, the matrix element

for Fig. 2(a) needs to be multiplied by 2 to account for the charge conjugate diagram: if S were

real, no factor of 2 is used and instead the matrix element for Fig. 2(b) must include a symmetry

factor of (1/2).

The total amplitude of the diagrams in Fig. 2 is

iMab
S = i

✓
↵s

⇡vh

◆✓
C(rS)�hpv

2
h

4m2
S

◆
�ab✏1µ✏2⌫(p

⌫
1p

µ
2 � m2

h

2
gµ⌫)FS(⌧S) , (26)

where C(rS) is the SU(3) Casimir invariant for S, ⌧S = m2
h/(4m2

S) and the loop function FS isI Decouples as mS →∞ unless m2
0 = 0

I Can write relative production rate as
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defined to be

FS(⌧S) = �⌧�1 + ⌧�2Z(⌧S) , (27)

and Z(⌧S) is defined in Eq. (23). Note that in this instance the amplitude does decouple as

mS ! 1. If S were a ‘Higgs-descendant’ where mS ⇠ vh [8], the amplitude would again regain its

non-decoupling feature.

Now, the summed amplitude for M(gg ����!
SM+S

h) is

iMab
SM+S = i

 
P
f

Mab
SM

!
+ iMab

S

= i
�
↵s
⇡

�
�ab✏1µ✏2⌫(p

⌫
1p

µ
2 � m2

h
2 gµ⌫)

 
P
f

⇣
C(rf )

vh
FSM (⌧f )

⌘
+

C(rS)�hpvh

4m2
S

FS(⌧S)

!
.

(28)

If mS , mt > mh/2 then FS and FSM are strictly real and furthermore FS > 0 and FSM > 0

which implies that for �hp < 0 the interference between the colored scalar amplitude and the SM

is destructive.

The reason these are the same is because the requirement that x > 0 is the same as requiring

that the vev of �R is real with respect to the Higgs vev. The requirement that the discriminant of

x2 be negative means that x gets moved into the complex plane, and hence the vev of �R picks up

an imaginary piece. But since �R and �I are part of the same field, an imaginary piece of a �R

vev is the same as �I getting a vev, which can be prevented by requiring the relevant e↵ective �

for �I to be positive and ensuring that the mass of �I is positive.

Since the phase space integration is identical to the case of the SM Higgs, we can write the ratio

✏gg from Eq. (10) as

✏gg =

�����
P
f

⇣
C(rf )

vh
FSM (⌧f )

⌘
+

C(rs)�hpvh

4m2
S

FS(⌧S)

�����

2

�����
P
f

⇣
C(rf )

vh
FSM (⌧f )

⌘�����

2 , (29)

and so �(gg ����!
SM+S

h) = ✏�(gg ��!
SM

h). We plot the ratio ✏ in Figs. 3 and ??. In Fig. 3, we

show contours of ✏gg in the mS–�hp plane for mh =??? GeV. We see that both enhancement and

suppression are possible, typically delineated by the choice of the sign of �hp. One feature to

notice is the strong dependence on mS . As we will this is related to the decoupling properties

of S. We see that for positive �hp, only an enhancement is possible, while for �hp < 0 one can

obtain a suppression or in the case of light scalar masses, also an enhancement. This is because if

mS < mh/2, the scalar amplitude develops an imaginary part since the intermediate scalars can
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Colored Scalar: Results(Preliminary)

I The relative rate for h production (mh = 125 GeV)

100 200 300 400 500
0

1

2

3

4

mSHGeVL

Ε
gg

SM3 + Color Octet Scalar

-0.1

0.1

-0.3

0.3

Λhp

I Sign λhp determines enhancement or suppression
I Effect decouples as mS gets large
I ATLAS / CMS bounds from di-jet pairs allow for ∼ 200− 320 GeV
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Colored Fermions

I Can have exotic fermions which mix with SM top quark
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FIG. 4. Same as Fig. 3, except now we include SM4.

as well, but first we consider only mixing between the fermions. A simple example of this class of

fermions is the scenario where one adds a vector-like top-like pair of quarks which we now examine.

More complicated scenarios follow in a straightforward way.

The new exotic quarks in this scenario are given by,

 L,R = (�L,R,!L,R) ⌘ (3, 2, 1/6) (30)

This leads to the following mass terms,

L � �ytHQLtR � yRH LtR � M L R + h.c. (31)

For now we treat the ‘vector’ mass M as a free parameter. After EWSB there will be mixing

induced by the yR term. This leads to a rotation from the gauge basis (t,�) to the mass basis

(t1, t2) after which we obtain for the top-sector,

L � �t̄
⇣
M̂D + h

vh
V̂h

⌘
PR t + h.c. (32)

where t ⌘ (t1, t2) and M̂D = L̂M̂R̂†, V̂h = L̂N̂hR† and we have rotated the mass and interaction

matrices by a ‘left-handed’ rotation matrix on the left and a ‘right-handed’ rotation matrix on the

right for matrices,

M̂ =
Mt 0

YR M
N̂h =

Mt 0

YR 0
, (33)
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as well, but first we consider only mixing between the fermions. A simple example of this class of

fermions is the scenario where one adds a vector-like top-like pair of quarks which we now examine.

More complicated scenarios follow in a straightforward way.

The new exotic quarks in this scenario are given by,

 L,R = (�L,R,!L,R) ⌘ (3, 2, 1/6) (30)

This leads to the following mass terms,

L � �ytHQLtR � yRH LtR � M L R + h.c. (31)

For now we treat the ‘vector’ mass M as a free parameter. After EWSB there will be mixing

induced by the yR term. This leads to a rotation from the gauge basis (t,�) to the mass basis

(t1, t2) after which we obtain for the top-sector,

L � �t̄
⇣
M̂D + h

vh
V̂h

⌘
PR t + h.c. (32)

where t ⌘ (t1, t2) and M̂D = L̂M̂R̂†, V̂h = L̂N̂hR† and we have rotated the mass and interaction

matrices by a ‘left-handed’ rotation matrix on the left and a ‘right-handed’ rotation matrix on the

right for matrices,

M̂ =
Mt 0

YR M
N̂h =

Mt 0

YR 0
, (33)

I Again the amplitude is of the same form
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giving a diagonal M̄D with entries mt1 , mt2 and we have defined YR = yRvhp
2

and Mt = ytvhp
2

. Note

that the 0 entry in M̂ can always be ensured since for it to be non-zero it would require a MQ̄L R

operator, which can be trivially rotated away. The coupling matrix V̂h will dictate the couplings

of the top-sector with the SM Higgs and can in principal have o↵ diagonal entries, however only

the diagonal entries contribute to gg ! h. The rotation matrices are found by diagonalizing the

hermitian matrices R̂(M̂ †M̂)R̂† and L̂(M̂M̂ †)L̂†.

There are now two diagrams which contribute to gg ! h, one for each mass eigenstate t1 and

t2 given in Fig. 5. Since SU(3)c gauge invariance guarantees these two contributions di↵er only

in their coupling to the Higgs, i.e. in the element of V̂h, we can simply take the SM result for

gg ! h through a top-quark and insert the appropriate element of V̂h in place of the usual Yukawa

coupling. We can of course consider other more complicated and phenomenologically interesting

mixing scenarios, but the basic structure will be the same regardless of it is top-type mixing or

bottom-type mixing. One simply obtains di↵erent combinations of mixing angles and couplings for

the various V̂h entries which will simply enter the gg ! h amplitude as an insertion in the Higgs

vertex. Since we are focused on exotic fermion e↵ects on gg ! h we will simply take the Vhij

entry to be a free parameter in the amplitude and do not concern ourselves with the underlying

parameters which are model specific. For numerous interesting studies done with exotic fermions

see [10, 20? ] and more recently [? ].

We obtain for the amplitudes involving exotic fermions in the loop,

iMab
F = i

✓
↵s

⇡vh

◆✓
Vii

mFi

◆
C(r)�ab✏1µ✏2⌫

✓
p⌫1p

µ
2 � m2

h

2
gµ⌫

◆
FF (⌧Fi) (34)

and FF (⌧Fi) is given by Eq. (22) with ⌧Fi ⌘ m2
h/(4m2

Fi
) and Fi ⌘ t1, t2. From here one can see that

the amplitude decouples as mF ! 1 unless mF and Vii are generated by the same mass scale, such

as in the SM where we find Vhii = mF = Mt. These ‘direct’ new physics contributions will alter

gg ! h even in the absence of Higgs mixing. Generally these contributions will add constructively

if Vh11, Vh22 > 0.

Including Higgs mixing by adding a SM gauge singlet scalar now follows in a straightforward

manner from our discussion in Subsec. II B. This scalar can generate the mass parameter M

in Eq. (31) through a Yukawa coupling of the form,

y�� ̄L R ! M(1 +
�

v�
)�̄L�R (35)

where M =
y�v�p

2
. This term introduces a second interaction matrix V̂� found simarly to V̂h, but

I Can also add Higgs-mixing simultaneously
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FIG. 5. Exotic fermion contribution in the mass eigenbasis Loop particle needs label

with N̂h ! N̂� where,

N̂� =
0 0

0 M
(36)

Once again with Higgs mixing we are lead to consider gg ! s1,2 production, where if we assume

the only new physics is from the quark and Higgs mixing only the t1, t2 loops will contribute. This

gives for ✏ from Eq. (10),

✏gg =

c2
✓

�����
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⇣
C(rFi

)

vh

⇣
Vhii
mFi

⌘
FF (⌧Fi)

⌘
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P
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C(rFi

)
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V�ii
mFi

⌘
FF (⌧Fi)

⌘�����

2

�����
P
f

⇣
C(rf )

vh
FSM (⌧f )

⌘�����

2 , (37)

Note that as m1,2 ! 1, t1 will decouple from the � component of s1, but not the h component

and vice versa for t2. As in Sec. IV we can now examine this ratio as a function of Higgs-mixing

angle and exotic fermion mass. This is shown in Fig. 6.

VI. COLORED NEW PHYSICS VECTOR

The last type of New Physics contribution to gluon fusion we will consider is the insertion of

a new massive colored vector. In a renormalizable theory, the massive vector must arise from

a spontaneously broken gauge theory, which necessarily entails the addition of a NP scalar field

that acquires a vev and hence can mix with the SM Higgs via Eq. (2). Thus, in our minimal

framework, we will consider an extended gauge symmetry SU(3)1 ⇥ SU(3)2, commonly known

as the renormalizable Coloron model (ReCoM) [3, 10]. In this model, the complex scalar field �

transforms as (3, 3) and obtains a diagonal vev (when written as a matrix-valued field), which breaks

SU(3)1⇥SU(3)2 to the diagonal subgroup, which is identified with the SM SU(3)c symmetry. The
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Colored Vectors: ‘Coloron’ Model

I Color gauge sector is extended to SU(3)1 ⊗ SU(3)2 and
spontaneously broken to SU(3)c by vev of bi-fundamental Φ

Hill, E. Simmons: 0203079 / Bai, Dobrescu: 1012.5814

I Need to solve full scalar potential including Higgs portal
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FIG. 6. Ratio for exotic fermions. Need correct plots here

� field has 18 degrees of freedom: 8 are “eaten” by the broken gauge generators to make the massive

color vector G0µ known as the coloron, 8 become a real scalar SU(3)c octet GH , and the remaining 2

are real scalar �R and pseudoscalar �I color singlet fields. Hence, in this construction, the addition

of a massive color vector concomitantly includes a new scalar octet and two new scalar singlets,

and via the Higgs portal Eq. (1), GH can propagate in the loop and �R can mix with the SM

Higgs. We remark that in this scenario, the Higgs portal operator is required for e↵ects from G0µ,

GH , and �R to be manifest.

A. The Renormalizable Coloron Model

Here, we analyze the total scalar potential including the SM, the ReCoM, and the Higgs portal.

Our analysis mirrors that found in [3], except our addition of the Higgs portal operator creates

a link between the two scalar potentials V (H) and V (�) and hence the two vevs must be solved

simultaneously. The full scalar potential is

Vtot = V (�) + V (H) + Vhp

� m2
� Tr(�†�) � µ�(det� + h.c.) + ��

2

⇥
Tr(��†)

⇤2
+ �

2 Tr(��†��†)

� m2
H |H|2 + �H |H|4

� �hp|H|2 Tr(�†�)

(38)

where we assume µ� > 0 without loss of generality. We require m2
� > 0 and m2

H > 0 such that �

and H will acquire vevs. We also require 3�� + � > 0 and �H > 0 so each individual potential is
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bounded from below. The tree-level requirement on �hp is fill this in.

It is straightforward to find the vevs for � and H by decoupling the two equation system. We

find, in analogy with [3],

h�i =
v�p
6

I3 =

µ� +

s
µ2
� +

✓
2(3�� + �) � 3�2
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◆⇣
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� +
�hpm2

H
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⌘

✓
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hp

�H

◆ I3 . (39)

The Higgs vev is most easily written as Check these conventions

hHi =
1p
2

0
@ 0

vh

1
A =

1p
2

0
@ 0q

m2
H

�H
+

�hpv�
2�H

1
A , (40)

and vh is fixed to be 246 GeV.

Expanding � and H around their vevs, we get

� =
1p
6

(v� + �R + i�I) I3 + (Ga
H + iGa

G) T a (41)

where �R and �I are singlets under SU(3)c and Ga
H and Ga

G transform as octets with the generators

T a, following the prescription in [3]. The Ga
G form the Goldstone bosons which give a mass to the

Coloron, and since they are Nambu-Goldstone Bosons (NGBs), they remain massless. The Higgs

is decomposed in the usual way,

H =
1p
2

0
@ G±

vh + h + iGo

1
A (42)

where Go and G± are the Goldstone bosons eaten by the electroweak gauge bosons.

As discussed above after the spontaneous symmetry breaking SU(3)1 ⌦ SU(3)2 ! SU(3)c and

EWSB there will be a mixing induced between the singlets �R and h. This leads to the mass

squared matrix in the (h,�R) interaction basis given in Eq. (3), whith

m2
�R

=
v2
�

3 (3�� + �) � µ�v�p
6

, m2
h = 2�Hv2

h, m2
hp = ��hpv�vh (43)

where remember vh and v� depend �hp. The conditions 0  m2
h  m2

�R
and 0 imply

µ� <

r
2

3
(3�� + �)v� (44)

Since boundedness requires 3�� + � > 0 and we have used a global SU(3)c rotation to bring h�i
into diagonal form with entries v� > 0 we see that that the right hand side of Eq. (44) is positive

definite and thus bounds µ� from above. In order to diagonilize Eq. (36) we rotate by an angle
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bounded from below. The tree-level requirement on �hp is fill this in.

It is straightforward to find the vevs for � and H by decoupling the two equation system. We

find, in analogy with [3],

h�i =
v�p
6

I3 =

µ� +

s
µ2
� +

✓
2(3�� + �) � 3�2

hp

�H

◆⇣
2m2

� +
�hpm2

H
�H

⌘

✓
2(3�� + �) � 3�2

hp

�H

◆ I3 . (39)

The Higgs vev is most easily written as Check these conventions

hHi =
1p
2

0
@ 0

vh

1
A =

1p
2

0
@ 0q

m2
H

�H
+

�hpv�
2�H

1
A , (40)

and vh is fixed to be 246 GeV.

Expanding � and H around their vevs, we get

� =
1p
6

(v� + �R + i�I) I3 + (Ga
H + iGa

G) T a (41)

where �R and �I are singlets under SU(3)c and Ga
H and Ga

G transform as octets with the generators

T a, following the prescription in [3]. The Ga
G form the Goldstone bosons which give a mass to the

Coloron, and since they are Nambu-Goldstone Bosons (NGBs), they remain massless. The Higgs

is decomposed in the usual way,

H =
1p
2

0
@ G±

vh + h + iGo

1
A (42)

where Go and G± are the Goldstone bosons eaten by the electroweak gauge bosons.

As discussed above after the spontaneous symmetry breaking SU(3)1 ⌦ SU(3)2 ! SU(3)c and

EWSB there will be a mixing induced between the singlets �R and h. This leads to the mass

squared matrix in the (h,�R) interaction basis given in Eq. (3), whith

m2
�R

=
v2
�

3 (3�� + �) � µ�v�p
6

, m2
h = 2�Hv2

h, m2
hp = ��hpv�vh (43)

where remember vh and v� depend �hp. The conditions 0  m2
h  m2

�R
and 0 imply

µ� <

r
2

3
(3�� + �)v� (44)

Since boundedness requires 3�� + � > 0 and we have used a global SU(3)c rotation to bring h�i
into diagonal form with entries v� > 0 we see that that the right hand side of Eq. (44) is positive

definite and thus bounds µ� from above. In order to diagonilize Eq. (36) we rotate by an angle

I We see that the vevs are coupled through λhp
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Colored Vectors: ‘Coloron’ Model

I Calculation of colored vector contribution similar to h→ γγ
through a W loop

I We compute the amplitude in both the unitary and Feynman
gange

23

✓ from the interaction basis (h,�R) to the mass basis (s1, s2) as in Subsec. IIA, which gives as

before,

tan ✓ =
2m2

hp

(m2
�R

�m2
h)+

q
(m2

�R
�m2

h)2+(2m2
hp)2

h = c✓s1 + s✓s2

�R = �s✓s1 + c✓s2

. (45)

For the physical masses we obtain,

m2
s1

=
1

2
(m2

�R
+ m2

h) � 1

2

q
(m2

�R
� m2

h)2 + (2m2
hp)

2 (46)

m2
s2

=
1

2
(m2

�R
+ m2

h) +
1

2

q
(m2

�R
� m2

h)2 + (2m2
hp)

2 (47)

For the physical masses of the remaining scalars in the spectrum we find,

m2
�I

=
q

3
2µ�v� , m2

GH
= 1

3(2m2
�I

+ �v2
�) (48)

where �I is the the SM singlet pseudo-scalar and GH is a colored octet scalar. Thus, of these only

GH contributes to gluon fusion. The masses in Eq. (48) are equal to those found in [3], but with

the replacement of the ‘unpurturbed’ vev with the exact one found in Eq. (39) which takes into

account the contribution coming from the Higgs Portal interaction.

Requiring m2
�I

> 0 implies µ� > 0 once we have used a global SU(3)c rotation to bring the vev

into diagonal form with entries v� > 0. Thus we see that choosing the sign of µ� is akin to choosing

the sign for v�, such that m2
�I

> 0 is satisfied. Requiring m2
GH

> 0 also implies m2
�I

> �1
2�v2

�,

which when combined with Eq. (44) leads to the conditions,

� 1p
6
� < µ�

v�
, � > �2�� . (49)

Given the above conditions, one can then go on to establish a parameter space for this scenario.

The details of the diagonalization of the scalar sector can be found in Subsec. A 3.

B. Phenomenology

We compute the vector loop amplitude in Sec. A and state the result here,

iMab
V = i

✓
↵s

⇡v�

◆✓
C(r)

4

◆
�ab✏1µ✏2�

✓
p�1pµ

2 � m2
s1

2
gµ�

◆
FG0(⌧G0) (50)

I This amplitude does not decouple when mG′ →∞ or mG′ → 0
I Once EWSB occurs and φ and h mix, this ‘non’-decoupling will

transfer to s1 and s2 production
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Colored Vectors: ‘Coloron’ Model

I A colored vector can have much larger effects than the fermion
and scalar cases due to magnitude of ‘loop function’

0.0 0.5 1.0 1.5 2.0

-10

-5

0

5

10

R = mh�M

F
L

Loop Functions

I Furthermore, for color octet there is an additional factor of 3
coming from Casimir compared to 1/2 for SM contribution

I So vector contribution is naively ∼ 30 times the SM contribution
I Suppression from Higgs mixing can make this ∼ 1
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Colored Vectors: ‘Coloron’ Model

I The Coloron model also generically includes a physical scalar GH
coming from the SU(3)c octet component of Φ

I We consider the G′ and GH contributions in turn as well as their
simultaneous effects

I The relative rate including both contributions can be written as

22

found in [54], but with the important substitution of the unperturbed vev with the exact one found

in Eq. (43) found after disentangling the contribution coming from the Higgs portal interaction.

Requiring m2
�I

> 0 implies µ� > 0 once we have used a global SU(3)c rotation to bring the

vev into diagonal form with entries v� > 0, self-consistent with the earlier upper bound on �hp.

Requiring m2
GH

> 0 also implies m2
�I

> �1
2�v2

�, which, when combined with Eq. (48) leads to

the constraints,

� 1p
6
� < µ�

v�
, � > �2�� . (53)

Given the above conditions, one can then go on to establish a parameter space for this scenario.

The details of the diagonalization of the scalar sector can be found in Subsec. A 3.

B. Phenomenology

The complete vector loop amplitude is

iMab
V = i

✓
↵s

⇡v�

◆✓
C(r)

4

◆
�ab✏1µ✏2�

✓
p�1pµ

2 � m2
s1

2
gµ�

◆
FG0(⌧G0) (54)

where

FG0(⌧G0) ⌘ �
�
⌧�1
G0 (3 + 2⌧G0) + 3⌧�2

G0 (�1 + 2⌧G0)Z(⌧G0)
�

. (55)

A full derivation of this amplitude in both unitary and Feynman gauge in presented in Appendix A.

This gives for ✏gg from Eq. (14),

✏gg =

c2
✓

�����
P
f

⇣
C(rf )

vh
FSM (⌧f )

⌘
� t✓

✓
C(rG0 )

4v�
FG0(⌧G0) +

C(rGH
)

4v�

✓
2
3
m2
�I

+m2
�R

m2
GH

◆
FGH

(⌧GH
)

◆�����

2

�����
P
f

⇣
C(rf )

vh
FSM (⌧f )

⌘�����

2 . (56)

where have included both the G0 and GH contributions, but we will consider each individually

before considering both of their contributions simultaneously. discuss pheno and plots We note

that the colored vector loop function FG0 is numerically roughly a factor of check this 6 larger and

of the opposite sign than the usual SM loop function FSM , for a G0 mass in the same range as the

top quark, while the scalar loop function FGH
(⌧GH

) is roughly of the same order and of the same

sign as FSM . Thus we expect these two contributions to add to the SM amplitude with opposite

interference e↵ects. We first present results for ✏gg with the sole addition of the colored vector

in Fig. 6 followed by only GH for a few representative choices of paramters. The ReCoM

I In the Coloron model, one must also ensure scalar potential is still
stable for a given point in parameter space
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Coloron Model: Results(Preliminary)

I The relative rate for s1 production (ms1 = 125 GeV, vφ = 325 GeV)

100 200 300 400 500
0

1

2

3

4

mVHGeVL

Ε
gg

SM3 + Coloron

-0.05

0.05

-0.01

0.01

Λhp

I Smaller λhp required as well as opposite sign compared to scalar
I Does not decouple as vector mass taken large
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Coloron Model: Results(Preliminary)

I ms1 = 125 GeV, vφ = 325 GeV, mGH = 200 GeV

100 200 300 400 500
0

1

2

3

4

mVHGeVL

Ε
gg
SM3 + Coloron + GH

-0.05

0.05

-0.01

0.01

Λhp

I Contribution dominated by G′ loop which interferes destructively
with GH loop (due to sign of loop function)
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Conclusion/Ongoing Work

I There can be an interplay between Higgs mixing and effects of
new colored states which conspire to give ∼ SM production cxn.

I Currently examining effects on s2 production
I Exotic fermion case and extending analysis to higher masses
I Also examining effects on decays as well
I We examine general new physics effects on Higgs production
I Many new effects could be hiding in gluon fusion
I A scalar with ∼ SM cxn. does not guarantee SM Higgs
I We need to exhaust all possibilities before proclaiming a SM

Higgs
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Chicago, May 6

I Oh and also, don’t travel from Chicago!
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