

Diboson Physics at CMS

May 07, 2012 Irakli Svintradze On a behalf of CMS collaboration

Diboson physics

- The measurement of vector boson pair production provides very important tests of electroweak interactions at high energy
 - Many new physics models predict final states with multiple bosons
 - Important background to Higgs searches
- A number of important measurements and searches
 - Cross sections
 - Wγ, Zγ, WW, WZ, ZZ
 - Search for resonant production
 - Anomalous Trilinear Gauge couplings passage to physics beyond the standard model physics

Leptons at CMS

- Bosons with leptonic final states including charged leptons
 - Small branching fraction but very clean signature
- Finely segmented calorimeters, tracker and Muon solenoid
 - Resolution and momentum energy scale is well understood for Electrons, Muons
- Identified "standard candles": Z and W bosons
 - Excellent agreement with standard model expectation

3

Lepton efficiencies: Tag and Probe

- Using Standard candle processes Z->II
 - Very clean experimental signature
 - Two high-pT leptons in the final state provide sufficient discrimination against backgrounds
- Redundant number of leptons allows measuring efficiency as a function of various kinematic parameters such as p_T , pseudorapidity
- Allows correcting for differences in efficiencies between true leptons in data and Monte Carlo simulation

Wy and Zy

- Important background to searches:
 - − $\rho_T / \omega_T / a_T$, e*/μ*, monophoton, SUSY, H→γγ
- Major backgrounds to Vγ production:
 - Major background W/Z + jets are determined from data:
 - Build shower shape deposition templates for true photon in Monte Carlo and photon candidates coming from a jet in data, later one has wider spread in pseudo rapidity
 - Fit photon shower shape distribution in data with templates and extract background contribution from the fit
- Cross section measured in phase space:
 - Wγ: E_T^γ > 10 GeV, ΔR(I,γ) > 0.7

6

- $Z\gamma$: same as $W\gamma$ plus $M_{\parallel} > 50$ GeV

		Central	Statistical	Systematic	luminosity
Wγ	Measuered	56. <i>3 pb</i>	5.0 pb	5.0 pb	2.3 pb
	Theoretical	49.4 pb	3.8 pb		
Zγ	Measuered	9.4 <i>pb</i>	1.0 pb	0.6 pb	0.4 pb
	Theoretical	9.6 <i>pb</i>	0.4 pb		

05/08/2012

5

WW production

- Important background to searches:
 - Higgs, Graviton G, Z'
- Major backgrounds to WW production:
 - Drell-Yan
 - Reject event with same flavor lepton in Z mass window
 - Missing transverse energy cut
 - ttbar, tW
 - Reject any event with at least one jet or B tagged
 - WZ, ZZ
 - Reject event with third lepton
 - W+jets and QCD
 - Using lepton isolation and identification algorithms in combination with data based approach to minimize background
 - Contributes largest systematic uncertainty
- Cross section measured in phase space:
 - 60 GeV < M_{II} < 120 GeV

		Central	Statistical	Systematic	luminosity
W ⁺ W ⁻	Measuered	52.4 pb	2.0 <i>pb</i>	4.5 <i>pb</i>	1.2 <i>pb</i>
	Theoretical	47.0 <i>pb</i>	2.0 pb		

WZ and ZZ

- Important background to searches:
 - Higgs, ρ_T , W*
- Major backgrounds to ZZ/WZ production:
 - Negligible contributions from other processes
- Cross section measured in phase space:
 - $60 \text{ GeV} < M_{||(Z)} < 120 \text{ GeV}$

10

		Central	Statistical	Systematic	luminosity
wz	Measuered	17.0 pb	2.4 pb	1.1 <i>pb</i>	1.0 pb
	Theoretical	17.5 <i>pb</i>		0.6 pb	
zz	Measuered	3.8 <i>pb</i>	1.5 pb	0.2 pb	0.2 pb
	Theoretical	6.4 <i>pb</i>	0.6		

Events / 2 GeV

100

110

120 m_z (GeV)

90

80

Summary plot for Diboson CS measurements

aTGC

- Main contribution to production comes from t-channel quark exchange and partly final state radiation photons
- In the standard model s-channel contributes with triple gauge coupling
 - Allowed for WW γ and WWZ vertices
 - Not allowed for ZZZ, ZZγ or Zγγ vertices
- Theoretical independent approach using effective Lagrangian
 - Fits to log likelihood profile to get limits
- Select phase space with enhanced TGC contribution
 - $-~E_{T}$ of photon in Wy and Zy
 - P_T leading lepton in WW
 - P_T of Z boson in WZ and ZZ

Current limits

Irakli Svintradze (KSU) – PHENO 2012

05/08/2012

WW - 5 fb⁻¹

Vγ - 36 pb⁻¹

Summary

- Measured diboson cross sections on energy frontier
 - Good agreement with SM
 - Set the most stringent TGC limits
- Analysis with full statistics from 2011 data are coming up soon
 - Better measurements
 - Tighter limits or discovery