Recent LHCb Results

On behalf of the LHCb collaboration

Phenomenology-2012 Symposium Pittsburgh, U.S.A.

RAI

Sajan Easo May 8, 2012

1

Recent LHCb Results

Introduction

- LHCb detector, Performance of its sub systems
- Focus on results from
 - Rare decay channels $B_s \rightarrow \mu \mu B_d \rightarrow K^* \mu \mu$
 - Mixing induced CP violation in $B_s \rightarrow J/\psi \phi$
 - CP violation in $B^+ \rightarrow D K$

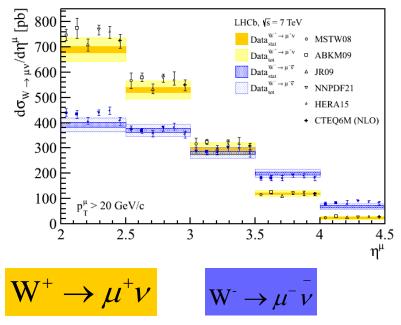
Most results from full 2011 dataset

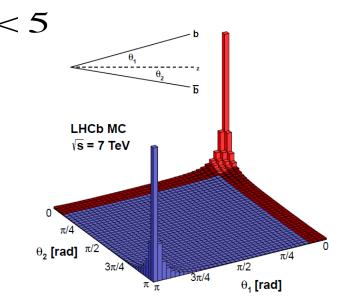
Other selected results

> Summary

More Info • 8 LHCb presentations in parallel sessions

Ihcb.cern.ch


Beauty and Charm production at LHC

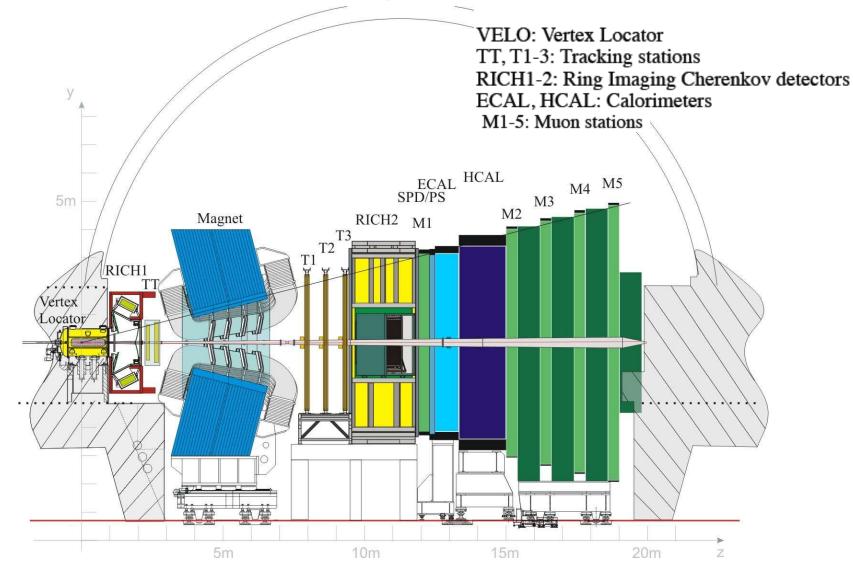

> Huge production of b and c at $\sqrt{s} = 7 \text{ TeV}$ LHCb measured :

$$\sigma(pp \rightarrow b\bar{b}X) = (284 \pm 20 \pm 49) \,\mu b$$

$$\sigma(pp \rightarrow c\bar{c}X) = (6.10 \pm 0.93) \text{mb}$$

- LHCb: Forward spectrometer $2 < \eta < 5$
 - Mainly flavour physics, but not limited to this.

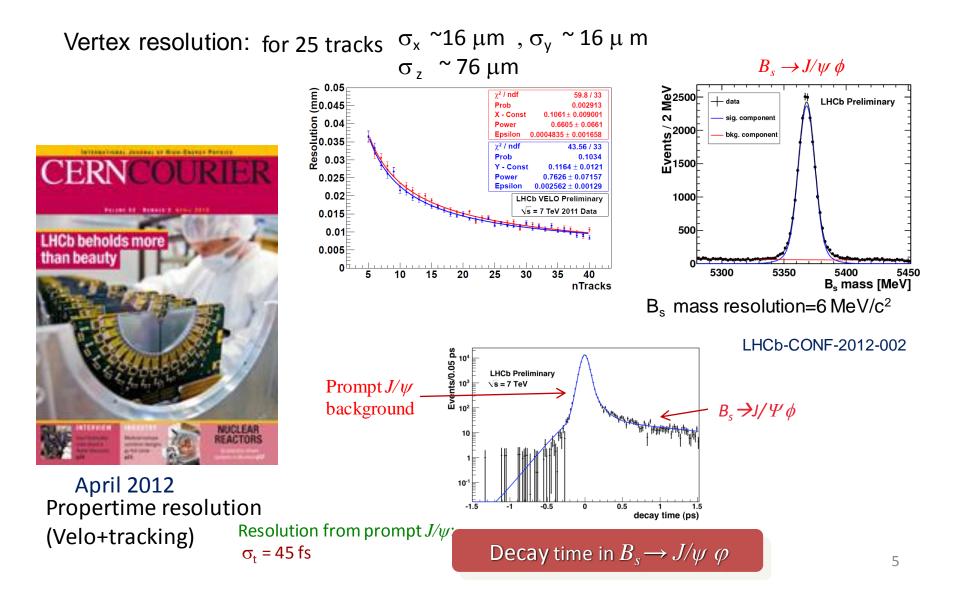
W differential cross-section


Phys.Lett.B694: 209-216, 2010

LHCb-CONF-2010-013

[preliminary]

Talk by Philip Ilten in parallel session


LHCb Experiment

~ 760 Members from 55 institutes in 15 countries

Detectors in LHCb: Velo

- 21 stations measuring R and ϕ coordinates, with silicon strips
- 8 mm from the beam during data taking.

Detectors in LHCb

9000

10000

Μ(μ⁻μ⁺) (MeV/c²)

LHCb

s = 7 TeV

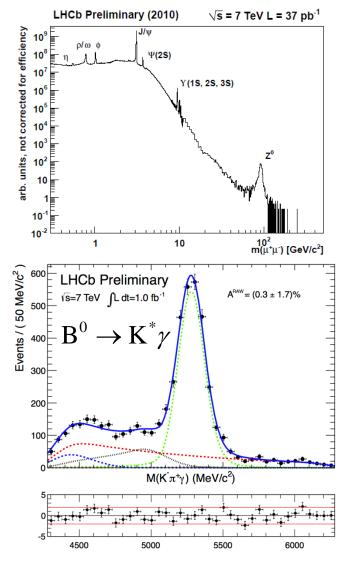
11000

Dimuon mass spectrum

Tracking System:

- Stations upstream and downstream of the magnet.
- Upstream and inner downstream parts: Silicon
- Outer downstream part: Drift chambers
- Magnetic field reversed for different data taking periods.
- Candidates / (25 MeV/c² Momentum resolution : $\Delta p/p = 0.35 \rightarrow 0.55 \%$ Y(1S,2S,3S)

Muon Stations:

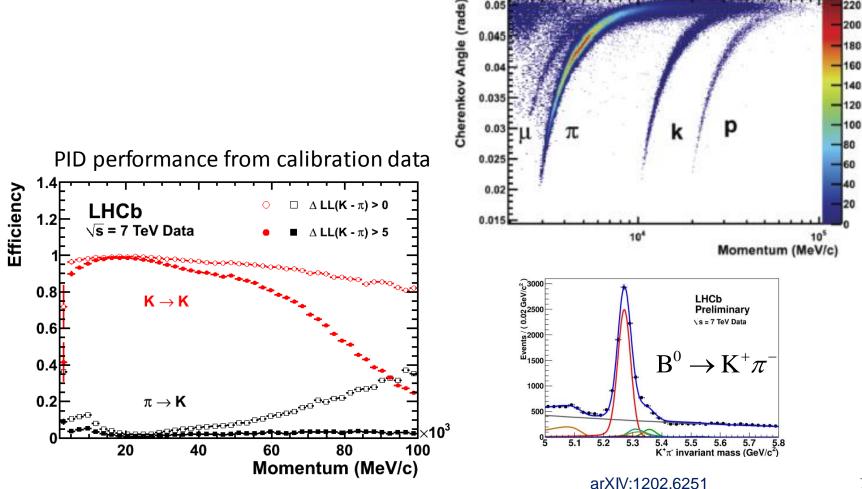

5 stations, excellent μ/π separation:, single hadron mis-id rate: 0.7%

arXiv:1202.6579

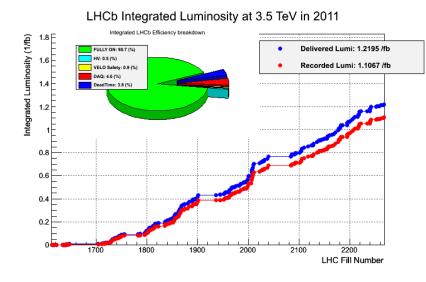
Calorimeters:

ECAL: Shashlik technology with Pb-Scintillator $s(E)/E = 10\%/\sqrt{E} + 1\%$

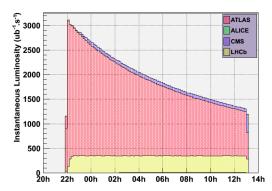
HCAL: Fe-Scintillator, $s(E)/E = 80\%/\sqrt{E} + 10\%$



Detectors in LHCb


Particle Identification:

Two RICH detectors covering a momentum range 1-100 GeV/c with 3 radiators: aerogel, C_4 F $_{\rm 10}$, CF $_{\rm 4}$


From RICH1 Gas ($C_4 F_{10}$)

2011 data taking

Instantaneous Luminosity levelling at LHCb

obtained through vertical beam displacements

Excellent Efficiency

- 2011: 1.2 fb⁻¹ delivered,
 - 1.1 fb⁻¹ recorded
 - 1 fb⁻¹ for Physics analysis

2012:

Another 1.5 fb⁻¹ expected with 4 TeV beams LHCb Peak Instantaneous Lumi at 3.5 TeV in 2011

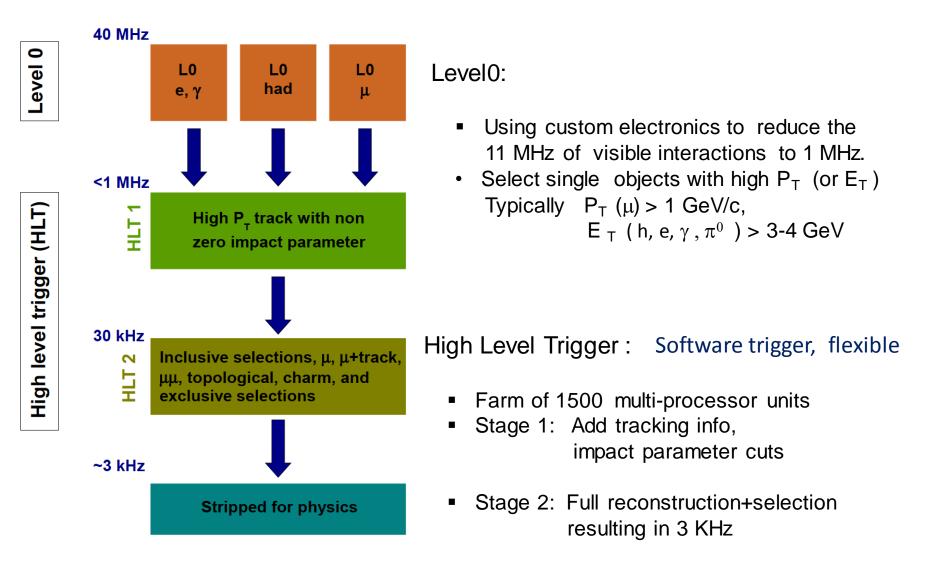
1900

Luminosity: Design: 2 x 10³² cm⁻² s⁻¹

1800

Actual: Typically 3-4 x 10 32 cm⁻² s⁻¹

2000


2100

2200 LHC Fill Number

Number of visible interactions per bunch crossing(μ): Design 0.4 (max 1.0) Actual ~ 1.1 (max ~1.6)

We had to cope with higher occupancies than what LHCb was designed for. $_{\scriptscriptstyle 8}$

LHCb Trigger Scheme

LHCb Data Analysis

Same side

Opposite side

proton

primary vertex

B

signal B

negative lepton taggers

 J/ψ μ^+

(e, m) from b-quark

opposite B

protor

vertex-charge tagger

from inclusive vertexing

opposite kaon tagger (K⁻)

positive leptons from

b! c! I cascade

- Selection of events:
 - Event kinematics+ topology information

 P, P_T of the tracks, Vertex quality, impact parameters of tracks, etc

- PID information
- Cut based or multivariate selection
 Boosted Decision Tree (BDT),
 Neurobayes etc.
- Optimize selection

Using MC data Using small sample of real data

Flavourtagging, if needed

> Various cross-checks with control channels, simulations as appropriate.

LHCb Data Analysis

Indirect search for New Physics (NP)

➢ Measure FCNC transitions, where NP is likely to emerge Example: OPE expansion for b→s transitions

$$H_{eff} = -\frac{4G_{F}}{\sqrt{2}} V_{tb} V_{ts}^{*} \sum_{i} \left[C_{i}(\mu) O_{i}(\mu) + C_{i}^{'}(\mu) O_{i}^{'}(\mu) \right]_{\substack{i \in ft-handed part\\suppressed in SM}}$$
Misiak 93,

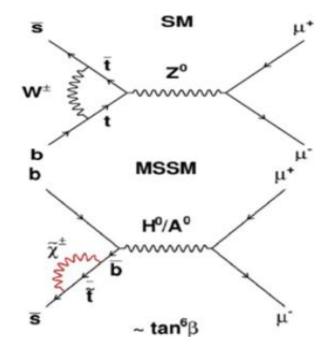
Buras, Münz 95

NP may • modify short-distance Wilson coefficients , C_i

• add new long-distance operators, O_i

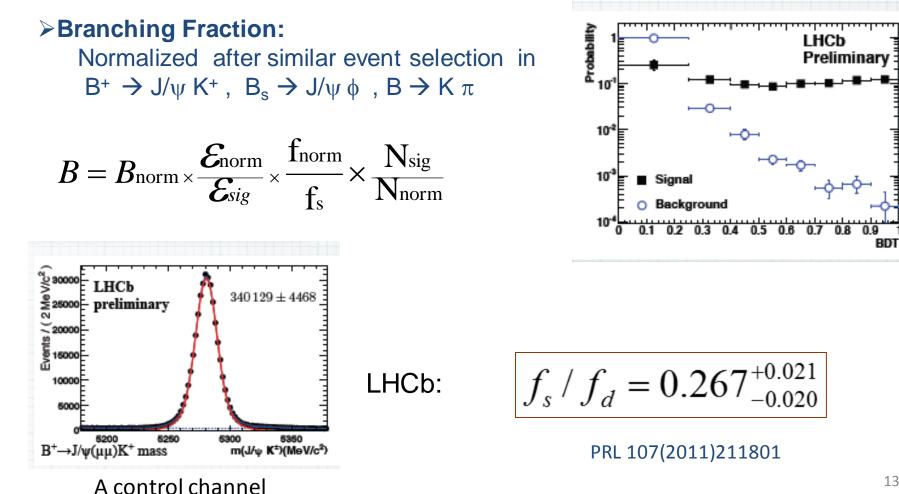
Measure CKM elements in different ways Any inconsistency may be a sign of NP

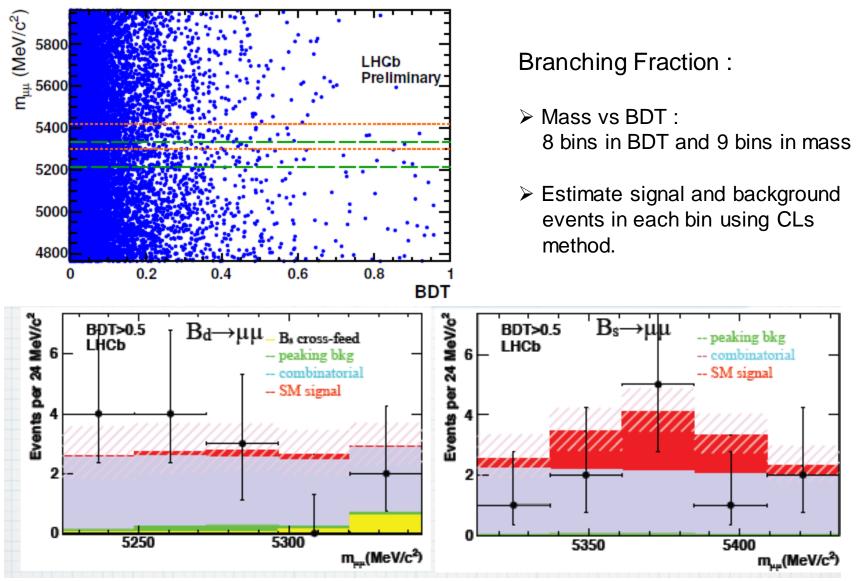
➢ Rare decay : FCNC


Talk by Xabier Vidal in parallel session

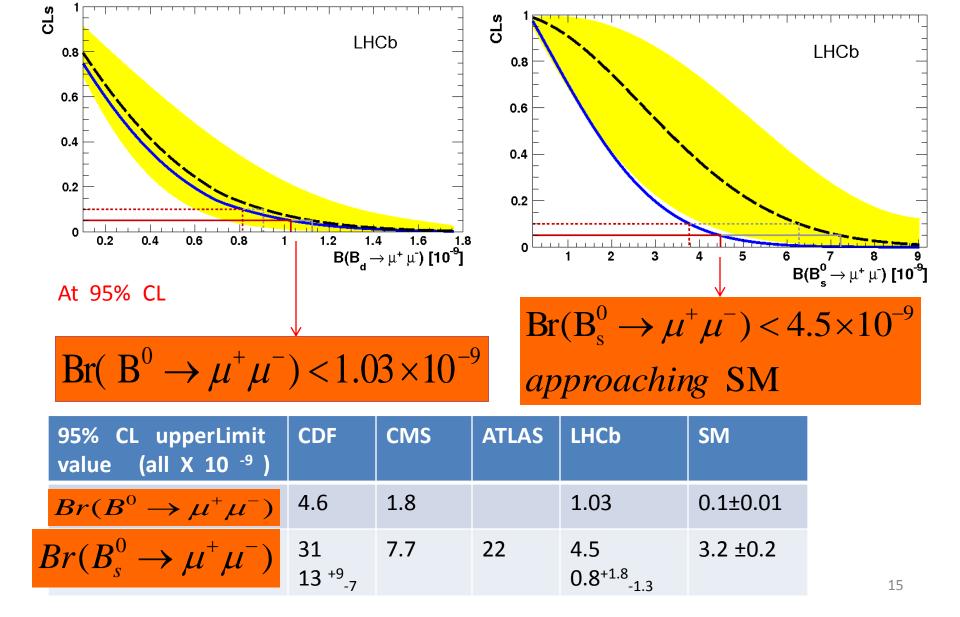
Standard Model: Helicity suppressed

SM Br (B $_{s} \rightarrow \mu \mu$) = (3.2 ± 0.2) x 10 ⁻⁹ SM Br (B $\rightarrow \mu \mu$) = (0.1 ± 0.01) x 10⁻⁹ arXiv:1005.5310, arXiv:1012.1447 Buras et.al, JHEP 10 (2010) 009

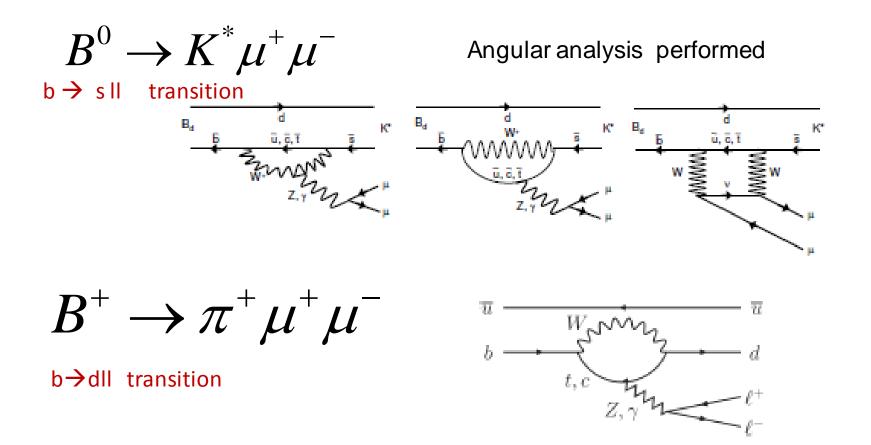

Branching ratio sensitive to NP
 eg: MSSM with large tan β


LHCb used the 1 fb⁻¹ of data from 2011 to update the branching fraction limits.

Event Selection : BDT, verified on calibration channels $B \rightarrow h^+h^-$ (h= K or π) in data


> Signal : $B \rightarrow h^+ h^-$ Background : B_s mass sidebands

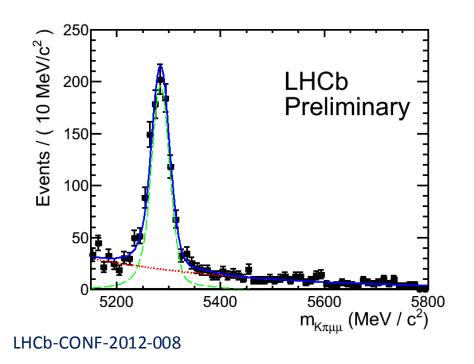
Branching fraction:


arXiv:1203.4493

Electroweak penguin decays

Talk by Gregory Ciezarek in parallel session

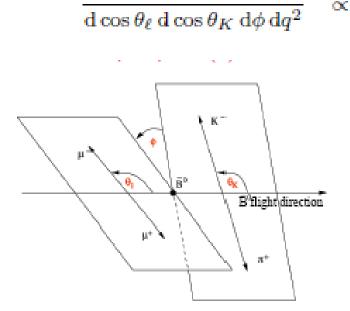
Mediated by loop diagrams in SM and can have contributions from New Physics (NP).



Analysis Strategy:

• Final selection : BDT trained on real data from 2010

 $J/\psi~K^{*0}~$ as proxy for 'training signal' and upper mass side band of $K^*~\mu\mu$ as background



900 ± 34 events, S/B ~ 4 from 1 fb⁻¹ of data in 2011 after removing various backgrounds

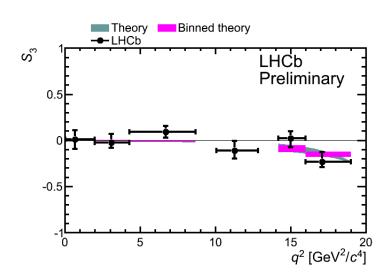
LHCb-CONF-2012-008 Moriond QCD conference

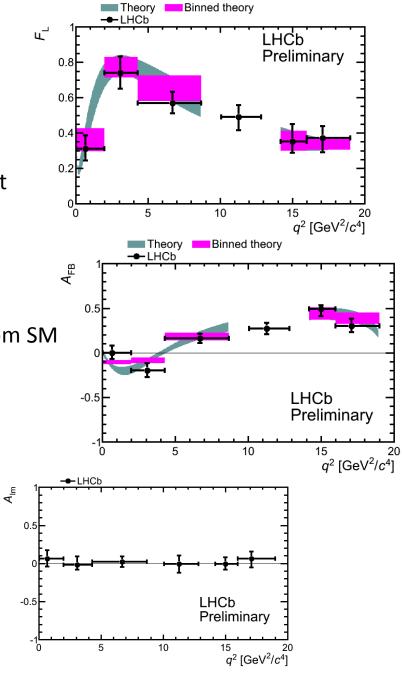
Differential branching fraction in terms of $q^2 = m_{\mu\mu}^2$ and θ_1 , θ_k , ϕ

 $d^4\Gamma$

$$F_{L} \cos^{2} \theta_{K} + \frac{3}{4} (1 - F_{L})(1 - \cos^{2} \theta_{K}) + F_{L} \cos^{2} \theta_{K} (2 \cos^{2} \theta_{\ell}) + \frac{1}{4} (1 - F_{L})(1 - \cos^{2} \theta_{K})(2 \cos^{2} \theta_{\ell} - 1) + S_{3} (1 - \cos^{2} \theta_{K})(1 - \cos^{2} \theta_{\ell}) \cos 2\phi + \frac{4}{3} A_{FB} (1 - \cos^{2} \theta_{K}) \cos \theta_{\ell} + A_{Im} (1 - \cos^{2} \theta_{K})(1 - \cos^{2} \theta_{\ell}) \sin 2\phi$$
(Notations from arXiv:0811.1214)

Fit the mass ($K^+\pi^-\mu^+\mu^-$) and the angular distribution to extract observables:


- F_L : Fraction of K^{*} longitudinal polarization
- A_{FB} : Forward backward asymmetry


 S_3 : A_T^2 (1- F_L) with A_T = asymmetry in K^{*} transverse polarization

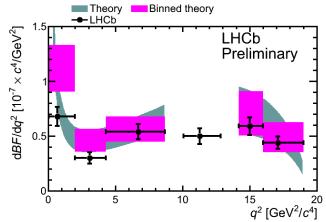
 A_{IM} : a T-odd Cp symmetry

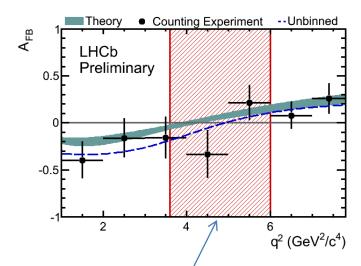
- Data in 6 bins of q²
- Performed an unbinned max. likelihood fit to determine the observables.
- Data points at the average q² in each bin.
 Error bars include systematic errors.
- These are consistent with the prediction from SM (C.Bobeth et al. JHEP 07)

 $B^0 \rightarrow K^* \mu^+ \mu^-$

e

• Zero crossing point of A_{FB} vs q²


Extracted from unbinned maximumlikelihood 2D fits to the $m_{k\pi\mu\mu}$ and q ² distributions of < B_d candidates in forward and backward going events.


(using q² in the range $1 \rightarrow 7.8 \text{ GeV}^2/\text{c}^4$)

$$q_0^2 = 4.9^{1.1}_{-1.3} \text{GeV}^2 / c^4$$

- This is consistent with SM predictions : $4 - 4.3 \text{ GeV}^2/c^4$ [arXiv:1105.0376, Eur. Phys. J. C 41 (2005) 173-188, C47 (2006) 625-641]
- Branching fraction: normalised to

$$B^0 \rightarrow J/\psi K^*$$

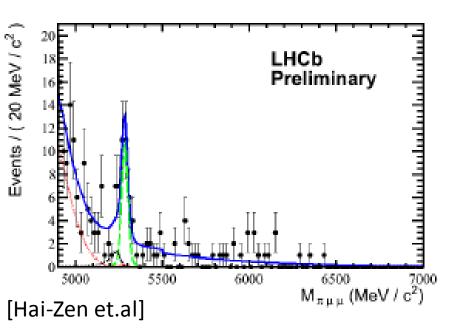
68% confidence interval in Zero crossing point from data.

> LHCb-CONF-2012-089 Moriond QCD conference

 $B^{\scriptscriptstyle +}
ightarrow \pi^{\scriptscriptstyle +} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$

LHCb-CONF-2012-006 Moriond QCD Conference

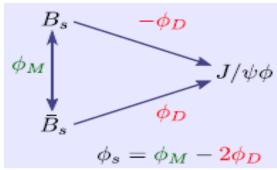
ightarrow b ightarrow dll suppressed compared to b ightarrow sll by


- Selection used BDT calibrated on $B^+ \rightarrow J/\psi \pi^+$ and $B^+ \rightarrow J/\psi K^+$
- > Branching fraction (BF) normalized to $B^+ o J/\psi K^+$

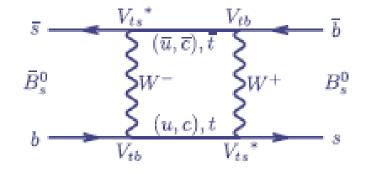
 $BF = (2.4 \pm 0.6(stat) \pm 0.2(sys)) \times 10^{-8}$

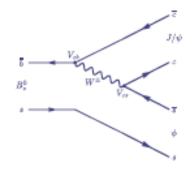
This is consistent with SM: $(1.96\pm0.21)\times10^{-8}$

$$|\frac{V_{td}}{V_{ts}}|$$


25.3^{+6.7}_{-6.4} candidates of $B^+ \rightarrow \pi^+ \mu^+ \mu^-$

"The rarest B decay ever observed" CERN COURIER May 2012


CP violation measurements


- CP violation from interference between B_s mixing and decay to the same final state.
- ➢ Recent measurements of φ_s from $B_s → J/ψ φ \text{ and } B_s → J/ψ ππ \text{ with 1 fb}^{-1} \text{ data.}$
- > Mixing phase: $\phi_M = 2 \arg V_{ts} V_{tb}^* \simeq -2\beta_s$ Sensitive to NP.
- ➢ For the decay: $\phi_D = \arg V_{cs} V_{cb}^* \simeq 0$

In SM :

$$\varphi_s^{SM} = -2\beta_s = (-0.0363 \pm 0.0016) rac$$

PRD 84 **3** : 2011

22

$$B_s^0 \rightarrow J/\psi\varphi$$

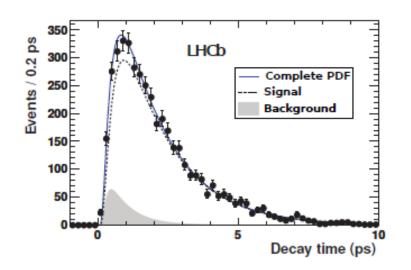
- > Has Branching fraction 5 times that for $B_s \rightarrow J/\psi \pi \pi$
- > But, $P \rightarrow V V$, so final state is a mixture of CP even and CP odd (I=0,1,2)
- Three polarisation amplitudes and phases

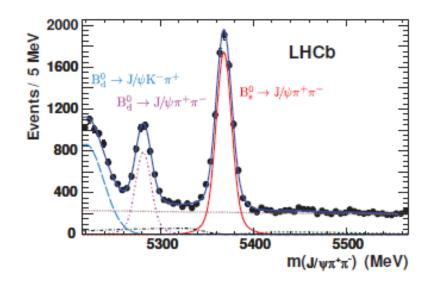
- > Amplitude analysis to disentangle these and extract ϕ s.
- > Non resonant K⁺ K⁻ s-wave component fraction and phase F_{s} , δ_{s}
- > Decay rate is sum of 10 terms (unlike the case for $B_s \rightarrow J/\psi \pi \pi$)

$B^0_s \to J/\psi \, \pi^+ \pi^-$

- Phys. Lett. B707(2012)497
 ► LHCb already measured ϕ_s from $B_s \rightarrow J/\psi$ f(980)
 LHCb-PAPER-2012-005,
- ► A Dalitz plot analysis of $B_s \rightarrow J/\psi \pi \pi$ has found arXiv:1204.5643 775< M($\pi^+ \pi^-$) < 1550 MeV to be CP odd (> 97.7 % @95 % CL)

For both channels , one essentially measures :


 $\sin(\phi_s) \times D(\sigma_t) \times (1 - 2\omega_{tag}) \times \sin(\Delta m_s t)$


Decay time resolution

Dilution from flavour tagging

 $B_s \rightarrow J/\psi \pi \pi$

Final selection using a BDT yielding 7421 ± 105 signal events At S/B ~ 4.2

 Maximum likelihood fit using the Mass and decay time

$$\phi_s = -0.019^{+0.173+0.004}_{-0.174-0.003}$$
rad

arXiv:1204.5675, submitted to PLB

LHCb-PAPER-2012-006

Profile likelihood in the $\Delta \Gamma_s - \phi_s$ plane 0.2 ∆Γ_s [ps^{-†}] Conf. Levels LHCb Preliminary Standard Model 0.18F 8 fb⁻¹ 68% CL 10 fb⁻ 0.16 95% CL 0.3 fb⁻¹ 1 fb⁻¹ 0.14E LHCb 95% C I 0.2 (-sd) ک 0.12E 0.1 0.0 A 0.08 0.06E -0.2 0.04 0.02 -0.4 0 -0.4 -0.2 0.2 0.4 -3 -2 -1 0 2 3 0 φ**[rad]** $\phi_{z}^{J/\psi\phi}$ (rad) 0.6580 ± 0.0054(stat.) ± 0.0066(syst.) Γ_{S} ps⁻¹ = \pm 0.018(stat.) \pm 0.006(syst.) $\Delta \Gamma_s$ 0.116 ps^{-1} = LHCb-CONF-2012-002 \pm 0.101(stat.) \pm 0.027(syst.) -0.001 = rad Φe

Simultaneous fit to both $B_s^0 \rightarrow J/\psi \pi^+ \pi^-$ and $B_s^0 \rightarrow J/\psi \phi^$ yields

 $\phi_{\rm S} = -0.002 \pm 0.083$ (stat) ± 0.027 (syst) rad

 $B_{c} \rightarrow J/\psi \phi$

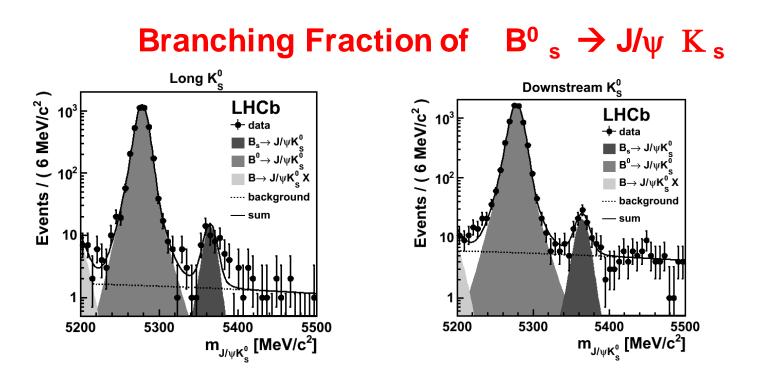
•Most precise measurement of ϕ_s to date and the first 5σ observation of non-zero $\Delta\Gamma_s$ • ϕ_s and $\Delta\Gamma_s$ compatible with SM

 $\phi_{\rm S}$

Measurement of

- P-wave phase (δ_{\perp}) increases rapidly across ϕ (1020) mass resonance, S-wave phase (δ_{s}) , varies slowly
- Physical solution for $\delta_s \delta_{\perp}$ decreases with m(K⁺ K⁻)

[arxiV:0908.3627 (hep-ph)]

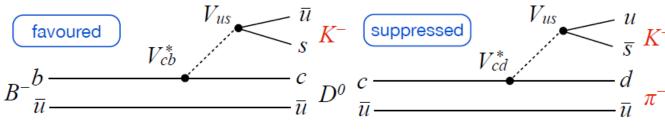

- This phase difference plotted in 4 bins of M (K + K⁻) for 0.37 fb⁻¹ of data.
- It decreases for Solution 1 at 4.7 σ and is chosen.
- Heavy Bs meson lives longer

arXiV:1202.4717(hep-ex)

Branching Fraction of $B^0_s \rightarrow J/\psi K^0_s$

- Another approach to probe ϕ_s and ϕ_d
- $B_s^0 \rightarrow J/\psi K_s^0$ is related to $B^0 \rightarrow J/\psi K_s^0$ though U-spin symmetry
- As a first step, ratio of branching fractions between these two channels is measured with 0.41 fb⁻¹ of data from LHCb.
- Event selection : includes a multivariate selection ('Neurobayes'), trained on a part of real data for $B^0 \rightarrow J/\psi K_s^0$ and then used to select both channels with rest of data.

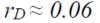
$$\mathbf{R}_{exp} = \frac{\mathrm{Br}(\mathbf{B}_{s}^{0} \to \mathrm{J}/\psi \mathrm{K}_{s}^{0})}{\mathrm{Br}(\mathbf{B}^{0} \to \mathrm{J}/\Psi \mathrm{K}_{s}^{0})} = \frac{\mathrm{N}(\mathbf{B}_{s}^{0} \to \mathrm{J}/\psi \mathrm{K}_{s}^{0})}{\mathrm{N}(\mathbf{B}^{0} \to \mathrm{J}/\psi \mathrm{K}_{s}^{0})} \times \varepsilon_{\text{geometry}} \times \varepsilon_{\text{time}} \times \frac{f_{d}}{f_{s}}$$

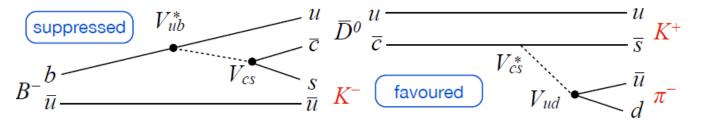


 $\begin{aligned} \mathbf{R}_{exp} &= 0.0420 \pm 0.0049 \, (\text{stat}) \pm 0.0023 (\text{sys t}) \pm 0.0033 (\ f_s \, / \, f_d) \\ \text{Using } & \text{Br}(\text{B}^{\,0} \rightarrow \text{J} / \psi \text{K}^{\,0}) \ \text{from the PDG,} \end{aligned}$

Br(B⁰_s → J/
$$\psi$$
K⁰_s) = [1.83±0.21(stat)±0.10(syst)
±0.14(f_s / f_d)±0.07(Br(B⁰ → J/ ψ K⁰))]×10⁻⁵

This is compatible with, but more precise than previous measurements. Very recent result LHCb-PAPER-2011-041


 To measure γ, b-->c and b--> u transitions of similar probability and final state. Talk by Michael Williams in parallel session

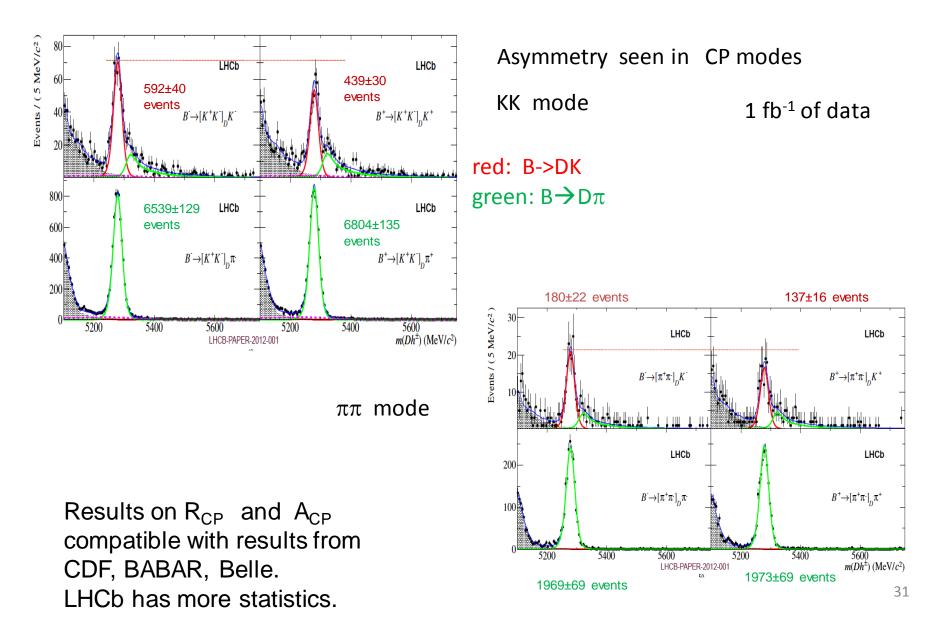


arXiv:1203:3662v1

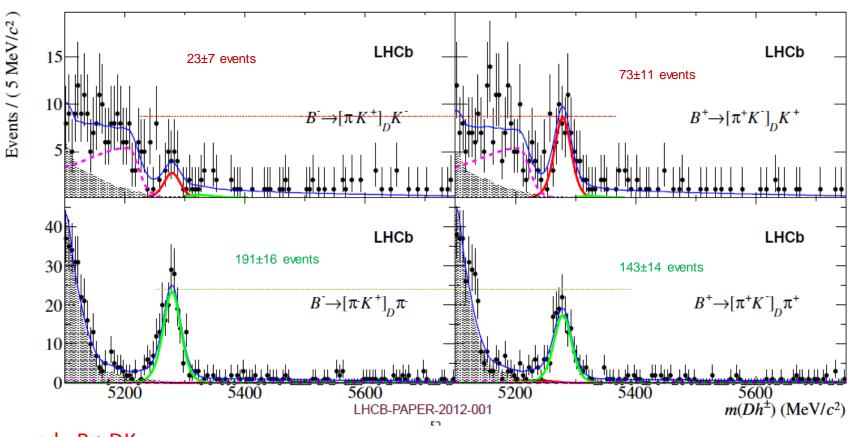
$$R_{CP+} = 1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma$$

$$A_{CP+} = \frac{2r_B \sin \delta_B \sin \gamma}{1 + r_B^2 + 2r_B \cos \delta_B \cos \gamma}$$

$$R^{ADS} = \frac{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}{1 + (r_B r_D)^2 + 2r_B r_D \cos(\delta_B - \delta_D) \cos \gamma}$$

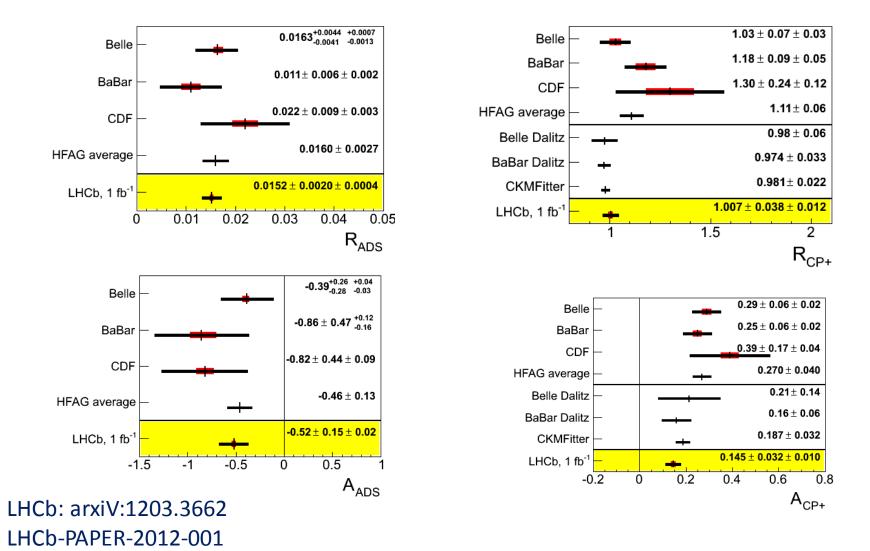

$$A^{ADS} = \frac{2r_B r_D \sin(\delta_B + \delta_D) \sin \gamma}{r_B^2 + r_D^2 + 2r_B r_D \cos(\delta_B + \delta_D) \cos \gamma}$$

relative amplitude:	weak phase difference:
$\left \frac{V_{cs} V_{ub}^*}{V_{us} V_{cb}^*} \right f_{col}$	$\arg\left(rac{V_{cs} \ V_{ub}^{*}}{V_{us} \ V_{cb}^{*}} ight)$
$= r_B$	$= \arg\left(-\frac{V_{ub}}{V_{ab}}\right)$
relative strong phase:	$\langle V_{cb} \rangle$
$=\delta_B$	$=\gamma$

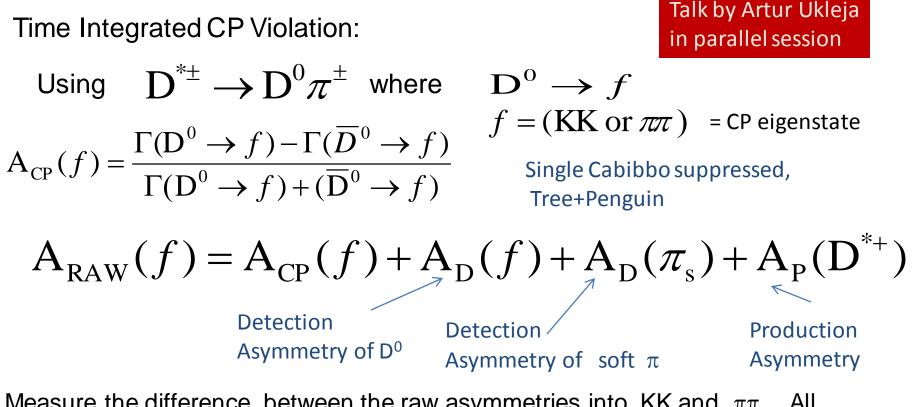

GLW: Gronau&London,PLB 253,483(1991) Gronau&Wyler, PLB 265,172(1991) ADS: Atwood,Dunietz &Soni, PRL 78,3257(1997) Atwood,Dunietz,Soni,PRD 63,036005(2001)

CP violation in $B^+ \rightarrow DK^{\pm}$ decays GLW(CP) mode $B^- \rightarrow DK^- D \rightarrow K^+K^-, \pi^+\pi^-$ (CP eigenstate) favoured+suppressed $B^- \rightarrow DK^-$ ADS mode combinations $B^- \rightarrow DK^- \qquad D \rightarrow K^- \pi^+$ Favoured mode Ratios of partial widths (R) and asymmetries (A): CP **ADS** $\Gamma(\mathrm{B}^{\pm} \to [\pi \mathrm{K}]_{\mathrm{D}} K^{\pm})$ $<\Gamma(B^{\pm}\rightarrow[\pi\pi]_{D}K^{\pm}),\Gamma(B^{\pm}\rightarrow[KK]_{D}K^{\pm})>$ $\Gamma(B^{\pm} \rightarrow [K\pi]_{D} \overline{K^{\pm}})$ **R**: $\Gamma(B^{\pm} \rightarrow [K\pi]_{D} K^{\pm})$ $\Gamma(B^{-} \to D_{CP}K^{-}) - \Gamma(B^{+} \to D_{CP}K^{+})$ $\Gamma(B^{-} \rightarrow D_{ADS}K^{-}) - \Gamma(B^{+} \rightarrow D_{ADS}K^{+})$ A: $\Gamma(B^{-} \rightarrow D_{CP}K^{-}) + \Gamma(B^{+} \rightarrow D_{CP}K^{+})$ $\Gamma(B^{-} \rightarrow D_{ADS}K^{-}) + \Gamma(B^{+} \rightarrow D_{ADS}K^{+})$

Fit to 16 data samples (2 (B charge) x 2 (Bachelor ID) x 4 (D decays)) to get 13 observables. Selection of events using BDT, kinematics cuts, PID cuts for K/ π .



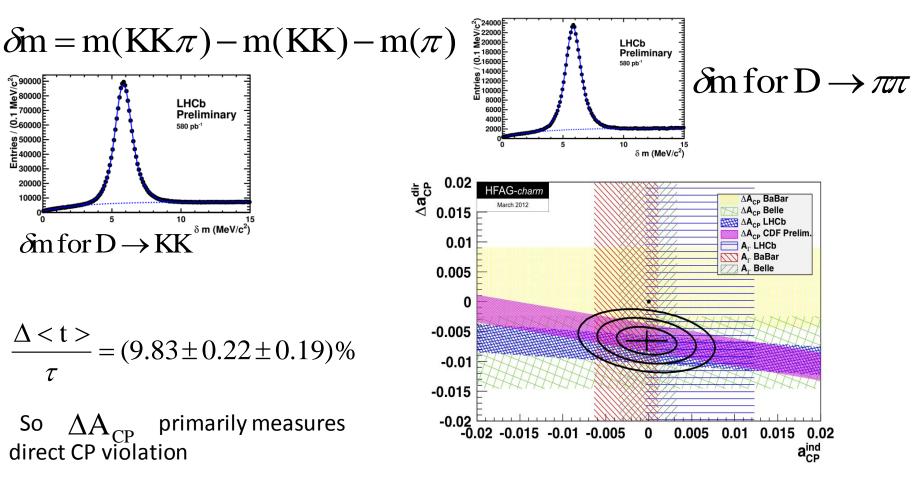
Asymmetry also seen in ADS modes.


red: B->DK green: B \rightarrow D π

Large negative asymmetry in $B \rightarrow DK$ and a hint of positive asymmetry in $B \rightarrow D\pi$

LHCb has some of the most precise measurements on these. ³³

CP Violation in CHARM Decays



Measure the difference between the raw asymmetries into KK and $\pi\pi$. All detection and production asymmetries cancel. Residual differences in decay time acceptance leads to an indirect CP component proportional to $\frac{\Delta < t > \tau}{\tau}$

$$\Delta A_{\rm CP} \equiv A_{\rm CP} (K^+ K^-) - A_{\rm CP} (\pi^+ \pi^-)$$

 $\frac{\Delta < t >}{\tau}$ = Difference in average decay time / D⁰ lifetime

CP Violation in CHARM Decays

From 0.62 fb⁻¹ data,

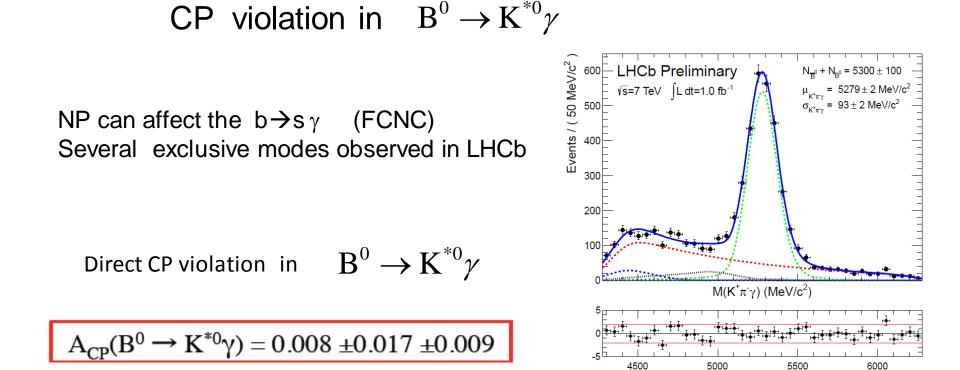
3.5 σ effect

$\Delta A_{\rm CP} = -0.82 \pm 0.21 ({\rm stat}) \pm 0.11 ({\rm syst})\%$

PRL 108: 111602(2012)

This result is compatible with previous measurements.

Summary and Prospects


- Excellent performance of the LHCb detector in 2011 has led to several physics results from the 1 fb⁻¹ of data. LHCb has become a "flavour factory".
- LHCb has started to
 - Explore new territory in searching for NP
 - Test SM with unprecedented precision
 - Make CP violation measurements in different channels

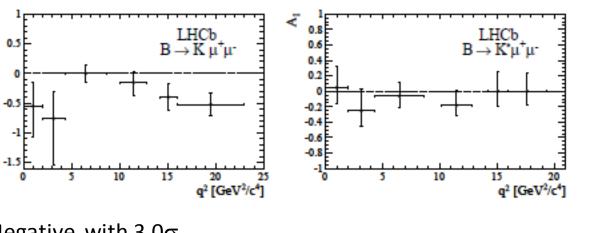
> Excellent prospects to enhance its discovery potential.

- 1.5 fb⁻¹ at $\sqrt{s} = 8 \,\text{TeV}$ from 2012 data
- > 5 fb⁻¹ at $\sqrt{s} = 13 \text{ TeV}$ during 2014-2017
- ➤ An active upgrade program to run at (1-2) x 10³³ cm ⁻²s⁻¹ with √s = 14 TeV from 2019, is underway. It would produce 5 fb⁻¹ of data per year with improved trigger efficiency.

Full detector readout at 40 MHz and flexible software trigger

EXTRA SLIDES

This is compatible with SM : (0.0061 ± 0.0043) Keum, Matsumori, Sanda, PRD 72 (2005) 014013


Isospin Asymmetry: $B^0 \rightarrow K^{(*)0} \mu^+ \mu^-$ and $B^+ \rightarrow K^{(*)+} \mu^+ \mu^-$

$$A_{I} = \frac{\Gamma(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) - \Gamma(B^{+} \to K^{(*)+} \mu^{+} \mu^{-})}{\Gamma(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) + \Gamma(B^{+} \to K^{(*)+} \mu^{+} \mu^{-})}$$
$$= \frac{\mathcal{B}(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) - \frac{\tau_{0}}{\tau_{+}} \mathcal{B}(B^{+} \to K^{(*)+} \mu^{+} \mu^{-})}{\mathcal{B}(B^{0} \to K^{(*)0} \mu^{+} \mu^{-}) + \frac{\tau_{0}}{\tau_{+}} \mathcal{B}(B^{+} \to K^{(*)+} \mu^{+} \mu^{-})}$$

Theory prediction : $A_1 = 0$

ľ

LHCb results are consistent with previous measurements

Negative with 3.0σ significance in $16 < q^2 < 23$

consistent with zero

 γ/Z^{0}

(a)

u,c,t

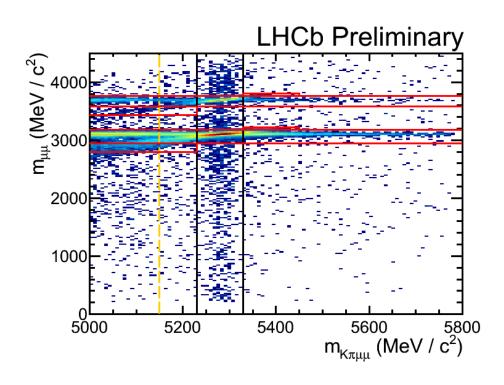
b

d/u

B0/+

 $\begin{array}{c}
\mu^{*} & \overline{b} & \overline{s} \\
\mu^{-} & B^{0/+} & d/u & d/u \\
\overline{s} & d/u & V/Z^{0} & \mu^{+} \\
\hline
d/u & & \mu^{-} \\
\end{array}$ (b)

Very recent result


LHCb-PAPER-2012-011

```
Theory:
T.Feldman,J.Matias
JHEP 01 (2002) 074
```


• Final selection using a BDT trained on real data from 2010:

 J/ψ K^{*0} as proxy for signal and upper side band of K^{*} $\mu\mu$ as background

Differential decay rates

The differential decay rate [+ for B⁰_s and - for B⁰_s]

$$\frac{d^4 \Gamma(B_s^0 \to J/\psi \phi)}{dt d\Omega} \propto \sum_{k=1}^{10} h_k(t) f_k(\Omega), \qquad (6)$$

$$h_k(t) = N_k e^{-\Gamma_s t} \{a_k \cosh \frac{\Delta \Gamma_s t}{2} + b_k \sinh \frac{\Delta \Gamma_s t}{2} \pm c_k \cos(\Delta m_s t) \pm d_k \sin(\Delta m_s t)\}$$
(7)

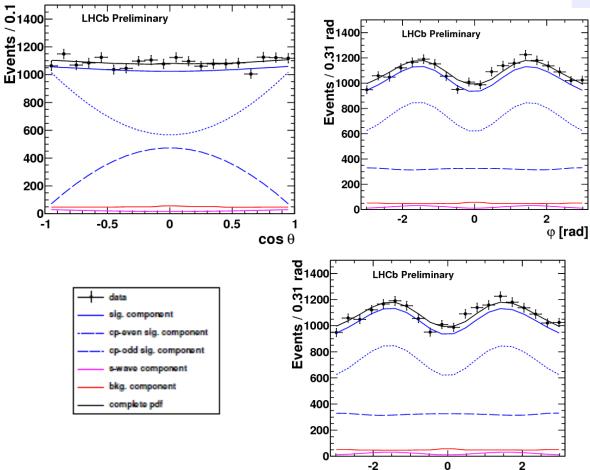
k	$f_k(\theta, \psi, \varphi)$	N_k	a_k	b_k	c_k	d_k
1	$2 \cos^2 \psi \left(1 - \sin^2 \theta \cos^2 \phi\right)$	$ A_0(0) ^2$	1	$-\cos \phi_s$	0	$\sin \phi_s$
2	$\sin^2\psi \left(1-\sin^2\theta\sin^2\phi\right)$	$ A_{\parallel}(0) ^2$	1	$-\cos \phi_s$	0	$\sin \phi_s$
3	$\sin^2 \psi \sin^2 \theta$	$ A_{\perp}(0) ^2$	1	$\cos \phi_s$	0	$-\sin \phi_s$
4	$-\sin^2 \psi \sin 2\theta \sin \phi$	$ A_{\parallel}(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp} - \delta_{\parallel})\sin\phi_s$	$\sin(\delta_{\perp} - \delta_{\parallel})$	$-\cos(\delta_{\perp} - \delta_{\parallel})\cos\phi_s$
5	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin^2 \theta \sin 2\phi$	$ A_0(0)A_{ }(0) $	$\cos(\delta_{\parallel} - \delta_0)$	$-\cos(\delta_{\parallel} - \delta_0)\cos\phi_s$	0	$\cos(\delta_{\parallel} - \delta_0) \sin \phi_s$
6	$\frac{1}{2}\sqrt{2}\sin 2\psi \sin 2\theta \cos \phi$	$ A_0(0)A_{\perp}(0) $	0	$-\cos(\delta_{\perp} - \delta_0)\sin\phi_s$	$\sin(\delta_{\perp} - \delta_0)$	$-\cos(\delta_{\perp} - \delta_0)\cos\phi_s$
7	$\frac{2}{3}(1 - \sin^2\theta \cos^2\phi)$	$(A_S(0))^2$	1	$\cos \phi_s$	0	$-\sin \phi_s$
8	$\frac{1}{3}\sqrt{6}\sin\psi\sin^2\theta\sin 2\phi$	$ A_{S}(0)A_{\parallel}(0) $	0	$-\sin(\delta_{\parallel} - \delta_{\rm S})\sin\phi_s$	$\cos(\delta_{\parallel} - \delta_{\rm S})$	$-\sin(\delta_{\parallel} - \delta_{S})\cos\phi_{s}$
9	$\frac{1}{3}\sqrt{6}\sin\psi\sin 2\theta\cos\phi$	$ A_{\rm S}(0)A_{\perp}(0) $		$\sin(\delta_{\perp} - \delta_{\rm S}) \cos \phi_s$	0	$-\sin(\delta_{\perp} - \delta_{S})\sin\phi_{s}$
10	$\frac{4}{3}\sqrt{3}\cos\psi(1-\sin^2\theta\cos^2\phi)$	$ A_{\rm S}(0)A_0(0) $	0	$-\sin(\delta_0 - \delta_S)\sin\phi_s$	$\cos(\delta_0 - \delta_S)$	$-\sin(\delta_0 - \delta_S)\cos\phi_s$

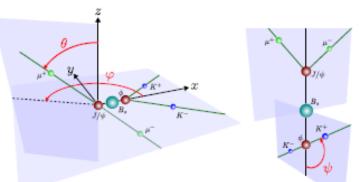
only 7th term presents in $J/\psi \pi^+\pi^-$ analysis.

$${
m B}^0_{
m s} \,{
m \rightarrow J/\psi \pi^+\pi^-}$$
 decay rates

$$\Gamma \left(\mathbf{B}_{\mathbf{s}}^{0} \to \mathbf{J}/\psi t_{\mathrm{odd}} \right) = \frac{\mathcal{N}}{2} e^{-\Gamma_{\mathbf{s}}t} \left\{ e^{\Delta\Gamma_{\mathbf{s}}t/2} (1 + \cos\phi_{\mathbf{s}}) + e^{-\Delta\Gamma_{\mathbf{s}}t/2} (1 - \cos\phi_{\mathbf{s}}) - \sin\phi_{\mathbf{s}}\sin(\Delta m_{\mathbf{s}}t) \right\}$$

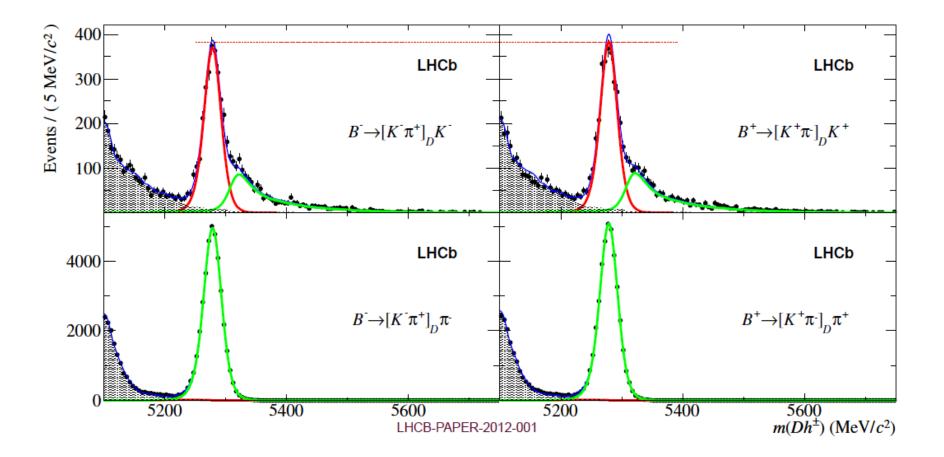
$$\Gamma \left(\overline{\mathbf{B}}_{\mathbf{s}}^{0} \to \mathbf{J}/\psi t_{\mathrm{odd}} \right) = \frac{\mathcal{N}}{2} e^{-\Gamma_{\mathbf{s}}t} \left\{ e^{\Delta\Gamma_{\mathbf{s}}t/2} (1 + \cos\phi_{\mathbf{s}}) + e^{-\Delta\Gamma_{\mathbf{s}}t/2} (1 - \cos\phi_{\mathbf{s}}) + \sin\phi_{\mathbf{s}}\sin(\Delta m_{\mathbf{s}}t) \right\}$$


$B_s \rightarrow J/\psi \phi$ 2500 ₩ Rectangular cut selection — data LHCb Preliminary yielding ~ 21299 signal candidates 2 siq. component Events / 1500 with very little background. bkg. component data Events / 0.2 ps sig. component LHCb Preliminary cp-even sig. component p-odd sig. component 1000 0^3 wave component bkg. component 500 complete pdf 10² n 5300 5350 5400 5450 B_s mass [MeV] 10 2 4 Decay time t [ps] Max likelihood fit to mass, decay time and the angles. s-wave fraction: $F_s = (2.2 \pm 1.2 \pm 0.7)\%$ Using transversity basis: $heta, arphi, \psi$


 $B_s \not \to J/\psi \ \varphi$

For the angular analysis, using transversity basis:

 $heta, arphi, \psi$


φ **[rad]**

Maximum likelihood fit to mass, decay time and the angle distributions.

Favoured Mode:

