Model Independent Constraints on New Physics in Rare B Decays

Wolfgang Altmannshofer

🛟 Fermilab

Phenomenology 2012 Symposium University of Pittsburgh May 7, 2012

based on: WA, Paradisi, Straub 1111.1257 + update 1205.xxxx

Motivation

Recent LHCb data on rare B decays shows remarkable agreement with the Standard Model predictions

Motivation

Recent LHCb data on rare B decays shows remarkable agreement with the Standard Model predictions

How much room is left for New Physics contributions in rare B decays?

Rare B Decays as Probes of New Physics

 $b \rightarrow s$ FCNC transitions are loop- and CKM-suppressed in the SM \rightarrow high sensitivity to New Physics

(incomplete) list of interesting observables in $b \rightarrow s$ decays:

decay	interesting observables	current exp. data	
$B \rightarrow X_{s} \gamma$	BR	BaBar, Belle	
${\cal B} ightarrow {\cal K}^* \gamma$	BR, S	BaBar, Belle	
$B \to X_{s} \ell^{+} \ell^{-}$	BR, A _{FB}	BaBar, Belle	
$B ightarrow K \mu^+ \mu^-$	BR, F _H	BaBar, Belle, CDF	
${\it B} ightarrow {\it K}^* \mu^+ \mu^-$	BR, F _L , A _{FB} , S ₃ , A ₇ , A ₈ , A ₉ ,	BaBar, Belle, CDF, LHCb	
$B_{\rm S} ightarrow \mu^+ \mu^-$	BR	CDF, LHCb, CMS, Atlas	

Effective Hamiltonian

$$\mathcal{H}_{\text{eff}}^{b \to s} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \frac{e^2}{16\pi^2} \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i' \right)$$

see also Descotes-Genon, Ghosh, Matias, Ramon '11, Bobeth, Hiller, van Dyk, Wacker '11

Constraining New Physics

- naive theorist's combination of experimental results
- assume experimental and theory uncertainties to be gaussian
- construct χ^2 function:

$$\chi^2 = \sum \frac{(\textit{O}_{\rm exp} - \textit{O}_{\rm th})^2}{\sigma^2_{\rm exp} + \sigma^2_{\rm th}}$$

see also Descotes-Genon, Ghosh, Matias, Ramon '11, Bobeth, Hiller, van Dyk, Wacker '11

Constraints on Scalar Currents

preliminary

consider one complex Wilson coefficient at a time

$$BR(B_{\rm S} \to \mu^+ \mu^-) \propto m_{\mu}^2 \left(\left| (C_{10}^{\rm SM} + C_{10}^{\rm NP} - C_{10}') + \frac{m_{B_{\rm S}}}{2m_{\mu}} (C_{\rm P} - C_{\rm P}') \right|^2 + \left| \frac{m_{B_{\rm S}}}{2m_{\mu}} (C_{\rm S} - C_{\rm S}') \right|^2 \right)$$

Constraints on Scalar Currents

preliminary

consider one complex Wilson coefficient at a time

$$BR(B_{\rm s} \to \mu^+ \mu^-) \propto m_{\mu}^2 \left(\left| (C_{10}^{\rm SM} + C_{10}^{\rm NP} - C_{10}') + \frac{m_{B_{\rm s}}}{2m_{\mu}} (C_{\rm P} - C_{\rm P}') \right|^2 + \left| \frac{m_{B_{\rm s}}}{2m_{\mu}} (C_{\rm S} - C_{\rm S}') \right|^2 \right)$$

From now on consider only C_{10} and C'_{10} effects in $B_s \rightarrow \mu^+ \mu^-$

preliminary

consider one complex Wilson coefficient at a time (C_7 , C_9 , C_{10})

▶ $BR(B_s \rightarrow \mu^+ \mu^-)$

preliminary

consider one complex Wilson coefficient at a time (C_7 , C_9 , C_{10})

►
$$BR(B_s \rightarrow \mu^+ \mu^-)$$

► $BR(B \rightarrow X_{s}\ell^{+}\ell^{-})$ (both low and high q^{2} region)

preliminary

consider one complex Wilson coefficient at a time (C7, C9, C10)

- ▶ $BR(B_s \rightarrow \mu^+ \mu^-)$
- ► $BR(B \rightarrow X_{s}\ell^{+}\ell^{-})$ (both low and high q^{2} region)
- ► $BR(B \rightarrow K\mu^+\mu^-)$ (both low and high q^2 region)

preliminary

consider one complex Wilson coefficient at a time (C_7 , C_9 , C_{10})

► $BR(B \rightarrow K\mu^+\mu^-)$ (both low and high q^2 region)

preliminary

consider one complex Wilson coefficient at a time (C_7 , C_9 , C_{10})

▶ $BR(B \rightarrow X_s \gamma)$

▶ $BR(B \rightarrow K\mu^+\mu^-)$

(both low and high q^2 region)

preliminary

consider one complex Wilson coefficient at a time (C_7 , C_9 , C_{10})

Data shows reasonable agreement with SM: $\chi^2_{SM}/N_{dof} = 24.6/23$ Imaginary parts are less constrained \rightarrow need to measure CP asymmetries

preliminary

consider one complex Wilson coefficient at a time (C'_7, C'_9, C'_{10})

► $BR(B_s \rightarrow \mu^+ \mu^-)$

preliminary

consider one complex Wilson coefficient at a time (C'_7, C'_9, C'_{10})

►
$$BR(B_s \rightarrow \mu^+ \mu^-)$$

► $BR(B \rightarrow X_{s}\ell^{+}\ell^{-})$ (both low and high q^{2} region)

preliminary

consider one complex Wilson coefficient at a time (C'_7, C'_9, C'_{10})

- ▶ $BR(B_s \rightarrow \mu^+ \mu^-)$
- ► $BR(B \rightarrow X_{s}\ell^{+}\ell^{-})$ (both low and high q^{2} region)
- ► $BR(B \rightarrow K\mu^+\mu^-)$ (both low and high q^2 region)

preliminary

consider one complex Wilson coefficient at a time (C'_7, C'_9, C'_{10})

- ▶ $BR(B_s \rightarrow \mu^+ \mu^-)$
- ► $BR(B \rightarrow X_{s}\ell^{+}\ell^{-})$ (both low and high q^{2} region)
- $BR(B \rightarrow K\mu^+\mu^-)$ (both low and high q^2 region)

► $B \rightarrow K^* \mu^+ \mu^-$ (*BR*, *A_{FB}*, *F_L*, *S*₃ and *A*₉ both low and high *q*² region)

preliminary

consider one complex Wilson coefficient at a time (C'_7, C'_9, C'_{10})

- ▶ $BR(B_s \rightarrow \mu^+ \mu^-)$
- ► $BR(B \rightarrow X_{s}\ell^{+}\ell^{-})$ (both low and high q^{2} region)
- $BR(B \rightarrow K\mu^+\mu^-)$ (both low and high q^2 region)

- ► $B \rightarrow K^* \mu^+ \mu^-$ (*BR*, A_{FB} , F_L , S_3 and A_9 both low and high q^2 region)
- ▶ $BR(B \rightarrow X_s \gamma)$

preliminary

consider one complex Wilson coefficient at a time (C'_7, C'_9, C'_{10})

- ▶ $BR(B_s \rightarrow \mu^+ \mu^-)$
- ► $BR(B \rightarrow X_{s}\ell^{+}\ell^{-})$ (both low and high q^{2} region)
- $BR(B \rightarrow K\mu^+\mu^-)$ (both low and high q^2 region)

- ► $B \rightarrow K^* \mu^+ \mu^-$ (*BR*, A_{FB} , F_L , S_3 and A_9 both low and high q^2 region)
- ▶ $BR(B \rightarrow X_{s}\gamma)$
- $B \rightarrow K^* \gamma$ (time dependent CP asymmetry)

preliminary

consider one complex Wilson coefficient at a time (C'_7, C'_9, C'_{10})

complementary information from the different exclusive decays

imaginary parts are as constrained as real parts

Impact of S_3 and A_9

- B → K^{*}µ⁺µ⁻ offers two observables that vanish in absence of right-handed currents: S₃ (aka A⁽²⁾_τ) and A₉
- ► S₃ probes CP conserving right-handed currents
- ► A₉ probes CP violating right-handed currents

Impact of S_3 and A_9

- B → K^{*}µ⁺µ⁻ offers two observables that vanish in absence of right-handed currents: S₃ (aka A⁽²⁾_τ) and A₉
- ► S₃ probes CP conserving right-handed currents
- ► A₉ probes CP violating right-handed currents

measurements by LHCb (and CDF) already lead to non-trivial constraints

Implications for the NP Scale

$$\mathcal{L}_{\mathsf{eff}} = \mathcal{L}_{\mathsf{eff}}^{\mathsf{SM}} + \sum_{i} \left(rac{\mathbf{c}_{i}}{\mathsf{\Lambda}_{\mathsf{NP}}^{2}} \ \mathcal{O}_{i} + rac{\mathbf{c}_{i}'}{\mathsf{\Lambda}_{\mathsf{NP}}^{2}} \ \mathcal{O}_{i}'
ight)$$

Operator		$\Lambda_{\sf NP}$ (TeV) for $ c_i^{(\prime)} =1$			
		+	_	+i	-i
$\mathcal{O}_7 =$	$(\bar{s}\sigma_{\mu u}P_Rb)F^{\mu u}$	69	275	43	39
$\mathcal{O}'_7 =$	$(\bar{s}\sigma_{\mu u}P_Lb)F^{\mu u}$	46	71	83	48
$\mathcal{O}_9 =$	$(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)$	28	73	21	23
$\mathcal{O}_9' =$	$(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$	48	22	24	28
$\mathcal{O}_{10} =$	$(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$	45	32	23	23
$\mathcal{O}_{10}^{\prime} =$	$(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$	25	82	36	25
$\mathcal{O}_{\mathbb{S}}-\mathcal{O}'_{\mathbb{S}}=$	$rac{m_b}{m_{B_s}}(ar{s}\gamma_5 b)(ar{\ell}\ell)$	93	93	98	98
$\mathcal{O}_P - \mathcal{O}'_P =$	$rac{m_b}{m_{B_s}}(ar{s}\gamma_5 b)(ar{\ell}\gamma_5\ell)$	173	58	93	93

Generalizations I

consider 3 real left-handed Wilson coefficients simultaneously marginalize over the third one

Flipped sign solutions:

- $C_{7,9,10} = -C_{7,9,10}^{SM}$: cannot be excluded by low energy data
- $\blacktriangleright C_7 = -C_7^{\mathsf{SM}}:$
- excluded by $B \to X_S \ell^+ \ell^-$ (Gambino, Haisch, Misiak '04) and (now) also by LHCb measurement of $A_{FB}(B \to K^* \mu^+ \mu^-)$
- excluded by LHCb measurement of $A_{FB}(B
 ightarrow K^* \mu^+ \mu^-)$

• $C_{9,10} = -C_{9,10}^{SM}$:

Generalizations II

consider also phases and right-handed currents

only left-handed currents only CKM CP violation only left-handed currents generic CP violation

left- and right-handed currents generic CP violation

- More data needed to break degeneracies
- Observables that are directly sensitive to right-handed currents and/or CP violation

95% C.L. predictions for observables to be measured/improved

Ci	C'_i	${\sf BR}(B_{\sf S} o \mu^+ \mu^-)$	$ \langle A_7 angle_{[1,6]} $	$ \langle A_8 angle_{[1,6]} $	$ \langle A_9 \rangle_{[1,6]} $	$\langle S_3 \rangle_{[1,6]}$
R	0	$[1.7, 4.8] \times 10^{-9}$	0	0	0	0
С	0	$[1.1, 4.4] \times 10^{-9}$	< 25%	< 14%	0	0
0	с	$[0.9, 4.5] imes 10^{-9}$	< 23%	< 16%	< 8%	[-4%,8%]
R	R	$< 4.6 imes 10^{-9}$	0	0	0	[-7%, 14%]
С	с	$< 4.3 imes 10^{-9}$	< 34%	< 21%	< 13%	[-7%, 13%]

Still room for New Physics!

Summary

Back Up

Our Naive $B_s \rightarrow \mu^+ \mu^-$ Combination

 $\mathsf{BR}(B_{\mathrm{s}}
ightarrow\mu^+\mu^-)_{\mathrm{exp}}=(2.4\pm1.6) imes10^{-9}$

Large Isospin Breaking?

