The CMSSM and the NUHM in Light of new LHC Limits

Enrico Maria Sessolo

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

BayesFITS group: A. Fowlie (UoS), A. Kalinowski (UoW), M. Kazana, K. Kowalska, S. Munir, K. Nawrocki, L. Roszkowski^{*}, E. Sessolo, S. Trojanowski, Y.-L. S. Tsai.

*On leave of absence from University of Sheffield

PHENO 2012 Pittsburgh, May 07, 2012

Outline

- Statistical approach
- Bayesian posterior
- LHC SUSY limits: derive likelihood maps for the razor (4.4/fb)
- Impact of LHC Higgs Bounds and possible m_h~125 GeV
- CMSSM results
- NUHM prelim. results
- Summary

INNOVATIVE ECONOMY MUTCHAL CONTROL NUMBER Grants for innovation. Project operated within the Fundation for Phate Society "NEL CONE" or funcated by the European Grants for innovation. Project operated within the Fundation for Phate Society" (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society" (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society" (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society" (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society" (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society" (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society" (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society" (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society") (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society") (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society") (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society") (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society") (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for Phate Society") (CONE" or funcated by the European Control for innovation. Project operated within the Fundation for innovation. Project operated within the Fundation for innovation. Project operated by the European Control for innovation. Project operated by the European Control for inno Based on work in preparation. Out Soon.

Statistical approach

Best way to go with so much data (sometimes mutually exclusive)

For positive measurements:

Take a single observable $\xi(m)$ that has been measured

- c central value, σ standard exptal error
- define

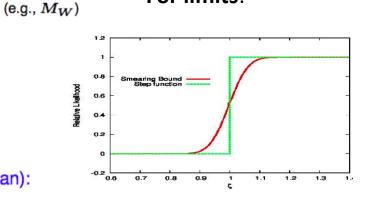
$$\chi^2 = rac{[\xi(m)-c]^2}{\sigma^2}$$

$${}^{m s}$$
 assuming Gaussian distribution $(d
ightarrow (c,\sigma))$:

$$\mathcal{L} = p(\sigma, c | m{\xi}(m)) = rac{1}{\sqrt{2\pi}\sigma} \exp\left[-rac{\chi^2}{2}
ight]$$

• when include theoretical error estimate τ (assumed Gaussian):

$$\sigma
ightarrow s = \sqrt{\sigma^2 + au^2}$$



for several uncorrelated observables (assumed Gaussian):

$$\mathcal{L} = \exp\left[-\sum_i rac{\chi_i^2}{2}
ight]$$

Bayes FITS

Central object: Likelihood function

For limits:

- Smear out bounds.
- Can add theory error.

Bayesian statistics

Bayes theorem: $Posterior = \frac{Prior \times Likelihood}{Evidence}$

- **Prior**: what we know about hypothesis BEFORE seeing the data.
- Likelihood: the probability of obtaining data if hypothesis is true.
- **Posterior**: the probability about hypothesis AFTER seeing the data.
- Evidence: normalization constant, crucial for model comparison.

If hypothesis is a function of parameters, then posterior becomes posterior probability function (pdf).

Marginalize to get credible regions:

$$p(\psi_{i=1,\dots,r}|d) = \int p(m|d)d^{n-r}m$$

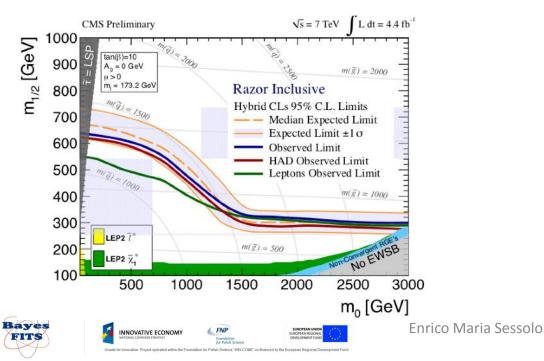
CMSSM: global scan

- Perform random scan over 4 CMSSM +4 SM parameters simultaneously
- Use Nested Sampling algorithm to evaluate posterior

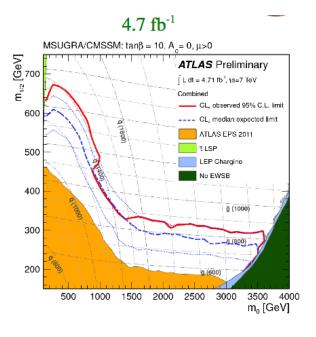
Parameter	Description	Prior Range	Prior Distribution	
CMSSM and N	NUHM			
m_0	Universal scalar mass	100, 4000	Log	
$m_{1/2}$	Universal gaugino mass	100, 2000	Log	
A_0	Universal trilinear coupling	-7000, 7000	Linear	
$\tan\beta$	Ratio of Higgs vevs	3, 62	Linear	
$\operatorname{sgn}\mu$	Sign of Higgs parameter	+1	Fixed	
additionally in	NUHM			
m_{H_u}	GUT-scale soft mass of H_u	100, 4000	Log	
m_{H_d}	GUT-scale soft mass of H_d	100, 4000	Log	
Nuisance				
M_t	Top quark pole mass	163.7, 178.1	Gaussian	
$m_b(m_b)_{\rm SM}^{\overline{MS}}$	Bottom quark mass	3.92, 4.48	Gaussian	
$\alpha_s(M_Z)^{\overline{MS}}$	Strong coupling	0.1096, 0.1256	Gaussian	
$1/\alpha_{\rm em}(M_Z)^{\overline{MS}}$	Reciprocal of electromagnetic coupling	127.846, 127.99	Gaussian	

Very wide ranges!

For the NUHM Two more free parameters:


 $m_{H_{u}}^{2}, m_{H_{d}}^{2}
eq m_{0}^{2}$

Measurement	Mean or Range	Exp. Error Th. Error		Likelihood Distribution	Ref.
CMS razor 4.4/fb analysis	See text	See text	0	Poisson	
SM-like Higgs mass m_h	117.5 - 118.5 and $122.5-129$	0	2	Lower/Upper limit – Error Fn	[9]
	114.4 - 127.5	0	2	Lower/Upper limit – Error Fn	[8]
	> 114.4	0	2	Lower limit – Error Fn	[34]
ζ_h^2	$< f\left(m_{h} ight)$	0	0	Upper limit – Step Fn	[34]
$\Omega_{\chi}h^2$	0.1120	0.0056	10%	Gaussian	[35]
$\sin heta_{ m eff}$	0.23116	0.00013	0.00015	Gaussian	[36]
mw	80.399	0.023	0.015	Gaussian	[36]
$\delta (g-2)^{\rm SUSY}_{\mu} \times 10^{10}$	30.5	8.6	1.0	Gaussian	[36, 37]
BR $(\overline{B} \rightarrow X_s \gamma) \times 10^4$	3.60	0.23	0.21	Gaussian	[36]
$BR(B_u \rightarrow \tau \nu) \times 10^4$	1.66	0.66	0.38	Gaussian	[38]
ΔM_{B_s}		0.12	2.40	Gaussian	[36]
$BR(B_s \rightarrow \mu^+\mu^-)$	$< 4.5 \times 10^{-9}$	0	14%	Upper limit – Error Fn	[19]


• CMS

SUS-12-005

• ATLAS

ATLAS-CONF-2012-037

Reproducing Razor (4.4/fb) limit

m₂ (GeV)

*m*_{1/2} (GeV)

2000

1500

1000

500

CMSSM, $\mu > 0$

 $\tan\beta = 3, A_0 = 0$

1000

2000

 m_0 (GeV)

BayesFITS (2012)

Likelihood

Razor 4.4 fb^{-1}

CMS Razor 95% CL

3000

4000

---- ATLAS 4.7 fb⁻¹ 95 % CL

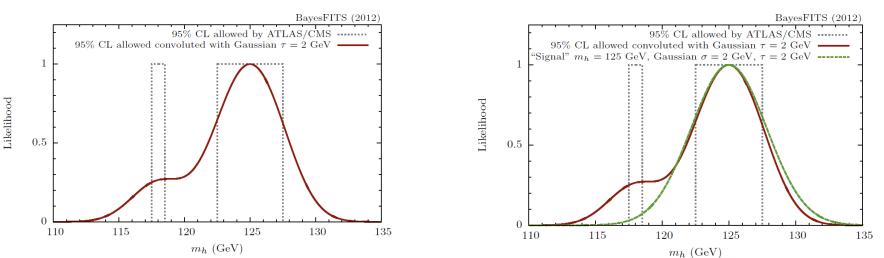
68.3% CL

95.0% CL

m1/2 (GeV)

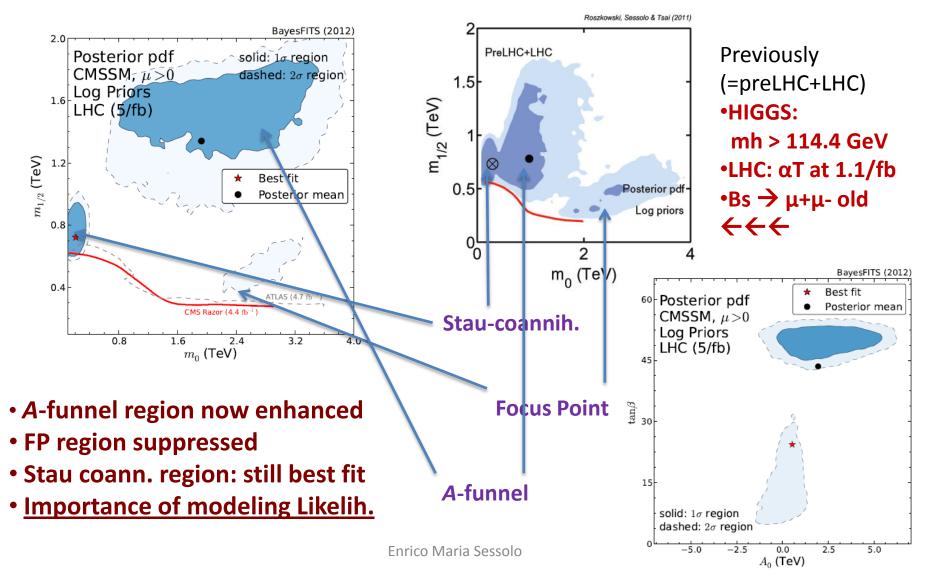
0.5

Follow CMS analysis

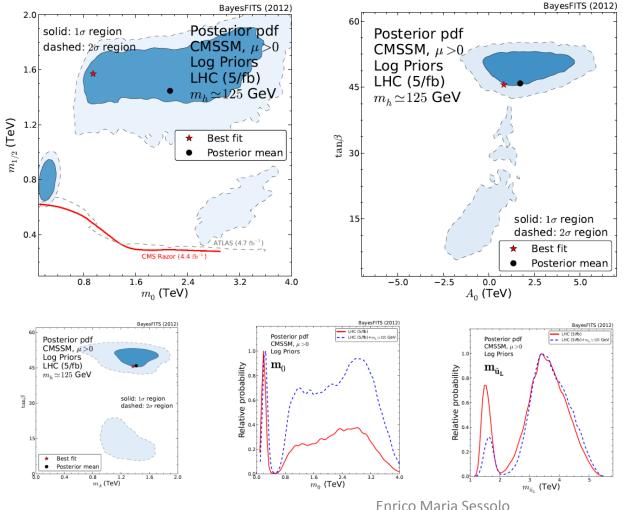

- For each SUSY point simulate signal:
- Construct mass spectrum
- Generate 5k events + reconstruct objects
- Consider 38 bins in R^2 and M_R
- Efficiency after final cuts
- Compute likelihood function
- Need to rescale by ~2 (w/PGS4)

Implementing the Higgs Constraints

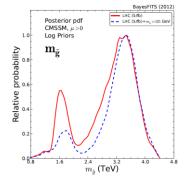
- Currently allowed (95%)
 ATLAS: 117.5-118.5 GeV and 122.5-129 GeV
 CMS: 114.4 127.5 GeV
- Add tau=2GeV th error
- Construct likelihood


- Assume mh~125 GeV confirmed
- Add tau=2GeV (th) and sigma=2GeV (expt)

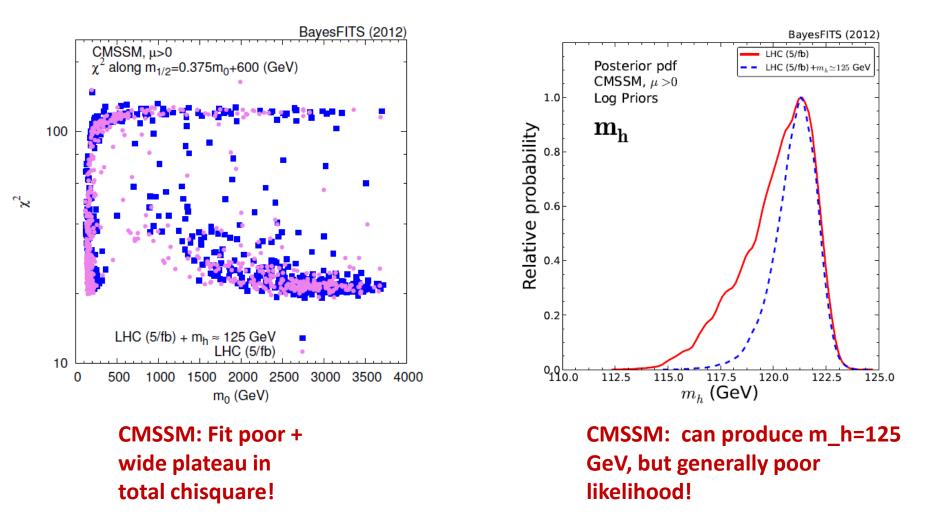
The Like-function only differs in the lower mass window where it is rather small anyway.


Enrico Maria Sessolo

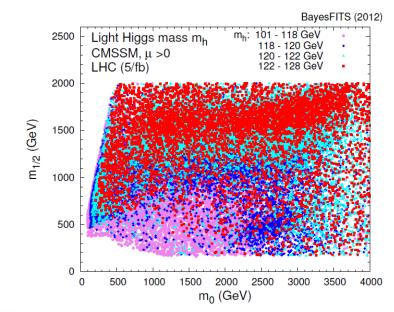
Impact of LHC razor and Higgs bounds on the the CMSSM

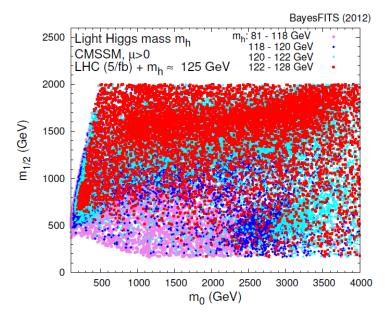

CMSSM w/o and w/ mh~125 GeV

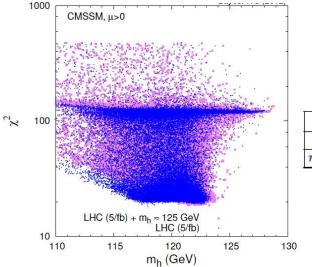
• mh~125 GeV



• Apparently similar to bounds


- •Probability moves to
- higher scales
- •Best fit point pushed up
- Lower bounds on masses
- \rightarrow razor



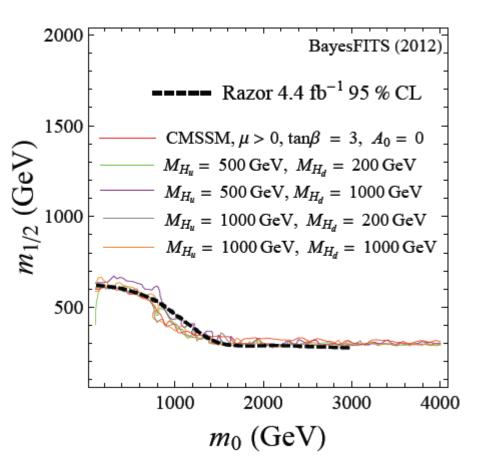

CMSSM w/o and w/ mh~125 GeV

Light Higgs in the CMSSM

Can find m_h~125 GeV but poor fit to constraints!

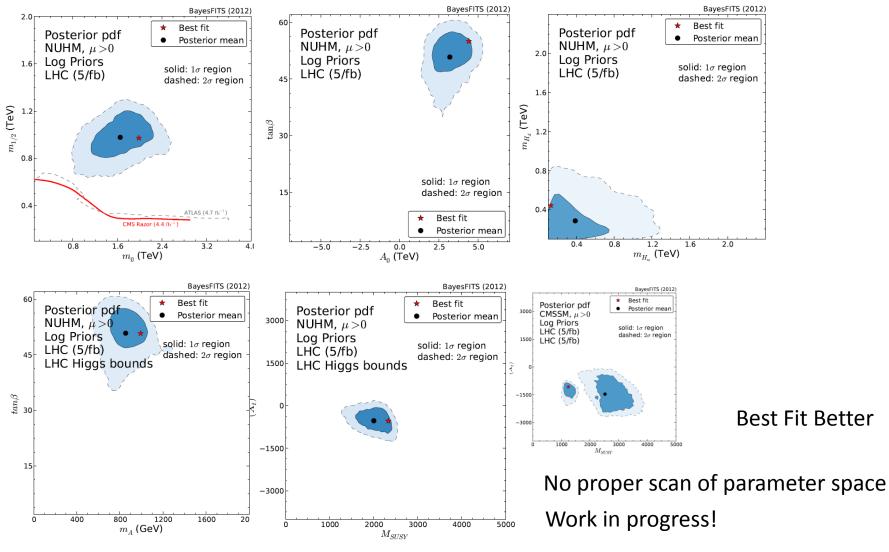
χ^2				$B_s \to \mu^+ \mu^-$	$\sin\theta_{\rm eff}$	m_W	$\delta \left(g-2\right)^{\mathrm{SUSY}}_{\mu}$	razor	Total
m_h bounds	7.62×10^{-14}	2.66	1.86	0.09	1.83	0.69	6.08	3.89	18.09
$m_h (125 \mathrm{GeV})$	0.1	0.38	1.52	0.7	1.07	0.13	10.6	3.37	18.65

Enrico Maria Sessolo


Non-Universal Higgs Model (NUHM)

- Our efficiency map derived for the razor (4.4/fb) limit in CMSSM works also for NUHM
- Only slight difference when $m_{H_u} << m_{H_d}$

(Not large fraction of points)


• We can use the CMSSM likelihood map for NUHM

$$m_{H_u}^2, m_{H_d}^2 \neq m_0^2$$

NUHM with new Higgs Bounds

Enrico Maria Sessolo

Summary

- Global Bayesian fits: a powerful tool to analyze SUSY models
- CMS razor SUSY limit included via our approximate likelihood maps (applicable to any MSSM-based R-parity conserving model)
- CMSSM is not doing well (Plateau, poor fit)
- NUHM: Slightly better fit

... But problems with live-in points, need more time.

