New Physics from the Top at the Large Hadron Collider

Chien-Yi Chen
Carnegie Mellon University
In collaboration with A. Freitas, T. Han, and K. Lee. in preparation.

Pheno 2012, Pittsburgh

Motivations

- LHC has excluded a large part of the squark and gluino parameter space. This suggests new physics may be hiding from our probes.
- One of the possibilities is the light stop scenario:
- Squarks of the third generation are lighter than Ist and 2nd generation squarks.
- Extend this idea to a model-independent and systematic approach by considering a color triplet of a light new particle with spin configurations ($0, \mathrm{I} / 2, \mathrm{I}$).

Setup

$$
p p \rightarrow Y \bar{Y} \rightarrow t X \bar{t} X \rightarrow b j_{1} j_{2} \bar{b} \ell^{-} \bar{\nu} X X+\text { h.c. }
$$

where $\ell=e, \mu$ and $j_{1,2}$ are light-quark jets.

Focusing on semileptonic mode:

- pros: signal is clean and SM background is small
- cons: rate is not large
- Y: top partner, color triplet.

- X: Missing energy signal; electrically neutral, color singlet massive particle; possible dark matter candidate.
- Assume a discrete symmetry to ensure X is pair produced:
e.g.
- R-parity in supersymmetry
- KK parity in universal extra dimensions

Spins of the X and Y

- Angular momentum conservation

Y	0	$\mathrm{I} / 2$	I
X	$\mathrm{I} / 2$	0 or I	$\mathrm{I} / 2$
t	$\mathrm{I} / 2$	$\mathrm{I} / 2$	$\mathrm{I} / 2$

Combinations

	Y $s, I_{\mathrm{SU}(3)}$	X $s, I_{\mathrm{SU}(3)}$	$G Y Y$ coupling	$X Y t$ coupling	sample model and decay $Y \rightarrow t X$	
i	$0, \mathbf{3}$	$\frac{1}{2}, \mathbf{1}$	$G^{a \mu} Y^{*} \stackrel{\rightharpoonup}{\mu}_{\mu}^{a} T^{a} Y$	$\bar{X} \Gamma t Y^{*}$	MSSM $\tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}$	
ii	$\frac{1}{2}, \mathbf{3}$	$0, \mathbf{1}$	$\bar{Y} G^{a} T^{a} Y$	$\bar{Y} \Gamma t X$	UED $\quad t_{\mathrm{KK}} \rightarrow t \gamma_{H,(1)}$	
iii	$\frac{1}{2}, \mathbf{3}$	$1, \mathbf{1}$	$\bar{Y}{Q^{a}}^{a} T^{a} Y$	$\bar{Y} X \Gamma t$	UED $\quad t_{\mathrm{KK}} \rightarrow t \gamma_{(1)}$	
iv	$1, \mathbf{3}$	$\frac{1}{2}, \mathbf{1}$	$S_{3}\left[G, Y, Y^{*}\right]$	$\bar{X} Y^{*} \Gamma t$	$*$	$\vec{Q} \rightarrow t \tilde{\chi}_{1}^{0}$

$$
\begin{aligned}
& \Gamma \equiv a_{L} P_{L}+a_{R} P_{R} \\
& \stackrel{\leftrightarrow}{\partial_{\mu}} B \equiv A\left(\partial_{\mu} B\right)-\left(\partial_{\mu} A\right) B, \\
& S_{3}\left[G, Y, Y^{*}\right] \equiv T^{a}\left[G_{\mu}^{a} Y_{\nu}^{*} \ddot{\partial}^{\mu} Y^{\nu}+G_{\mu}^{a} Y^{\mu *} \overleftarrow{\partial^{\prime}} Y_{\nu}-G_{\mu}^{a} Y_{\rho}^{*} \overrightarrow{\partial^{2}} Y^{\mu}\right]
\end{aligned}
$$

- GYY coupling: fixed by QCD.
- XYt coupling: general chiral structure allowed.

Vector top partner

To construct a vector boson in $\mathrm{SU}(3)$ fundamental representation For vector fields: $\partial_{\mu} V^{\mu}=0$

$$
\mathcal{L}_{\text {kin }}=-\frac{1}{2}\left(F_{\mu \nu}\right)^{\dagger} F^{\mu \nu}
$$

$$
F_{\mu \nu}=D_{\mu} Y_{\nu}-D_{\nu} Y_{\mu}
$$

$$
\text { where } D_{\mu}=\partial_{\mu}-i g T_{a} G_{\mu}^{a}
$$

$$
=i g\left(T_{b}\right)_{j i}\left((q-p)^{\tau} g^{\sigma \rho}+p^{\rho} g^{\sigma \tau}-q^{\sigma} g^{\rho \tau}\right)
$$

$$
=-i g^{2}\left(\left(T_{c} T_{d}+T_{d} T_{c}\right)_{k j} g^{\tau \lambda} g^{\rho \sigma}-\left(T_{c} T_{d}\right)_{k j} g^{\tau \sigma} g^{\lambda \rho}-\left(T_{d} T_{c}\right)_{k j} g^{\tau \rho} g^{\lambda \sigma}\right)
$$

Production

- QCD production cross section for top partners at $\sqrt{s}=14 \mathrm{TeV}$.
- Spin state counting: σ (scalar $)<\sigma($ fermion $)<\sigma($ vector $)$

Current Bounds

- ATLAS* : Based on I/fb data: exclude a fermionic Y with mass below 420 GeV (for $m_{x} \ll m_{Y}$). This can be translated into a bound $m_{Y} \gtrsim 500 \mathrm{GeV}$ for vector Y particles. *Phys.Rev.Lett. 108 (2012) 041805 by G. Aad et al.
- For any Y spin, there is no limit for very small mass difference,

$$
m_{Y}-m_{x} \lesssim m_{t}+10 \mathrm{GeV}
$$

- Signals: $p p \rightarrow Y \bar{Y} \rightarrow t X \bar{X} X \rightarrow b j_{1} j_{2} \bar{b} \ell^{-} \bar{\nu} X X+$ h.c.
- Use CalcHEP to simulate the signals at the parton level and then pass them into PYTHIA for detector effects.
- Standard Model background:
- t tbar production (large cross section): semileptonic mode

$$
p p \rightarrow t \bar{t} \rightarrow b j_{1} j_{2} \bar{b} \ell^{-} \bar{\nu}+\text { h.c. }
$$

where $\ell=e, \mu$ and $j_{1,2}$ are light-quark jets.

- $\quad t$ tbar Z : the cross section is smaller than t tbar production, but its kinematics are more similar to the signals

$$
p p \rightarrow t \bar{t} Z \rightarrow b j_{1} j_{2} \bar{b} \ell^{-} \bar{\nu} \nu \bar{\nu}+\text { h.c. } \quad \text { with } Z \rightarrow \nu \bar{\nu}
$$

- Wbbj j: $\quad p p \rightarrow W b \bar{b} j_{1} j_{2} \rightarrow \ell^{-} \bar{\nu} b \bar{b} j_{1} j_{2} X+c . c$.

Can be cut out by applying :

$$
\begin{gathered}
70 \mathrm{GeV}<m_{j j}<\quad 90 \mathrm{GeV}, \\
120 \mathrm{GeV}<\left.m_{t}^{r}\right|_{\text {had }}=m\left(b_{1} j j\right)<180 \mathrm{GeV} \text { : }
\end{gathered}
$$

- Using PYTHIA to simulate the SM background with initial and final state radiations. jet smearing: $\quad \frac{\Delta E_{j}}{E_{j}}=\frac{50 \%}{\sqrt{E_{j}(\mathrm{GeV})}} \quad b$-tagging efficiency $\epsilon_{b}=60 \%$.

Signal observability

- Using comb I (ScalarY) as an example at 14 TeV with integrated luminosity $100 / \mathrm{fb}$

Statistical significance $=\frac{S}{\sqrt{B}}$

- Choose two points to optimize
- Point I: $\left(M_{Y}, M_{x}\right)=(300,10) \mathrm{GeV}$
- Large cross section but small missing energy
- no additional cuts are applied
- independent of M_{x}
- Pioint II: $\left(M_{Y}, M_{x}\right)=(600,10) \mathrm{GeV}$
- Small cross section but large missing energy
- \quad (MET, MT) $>(350,90) \mathrm{GeV}$ is applied
$M_{T}^{2}(W)=\left(E_{\ell T}+E_{\nu T}\right)^{2}-\left(\vec{p}_{\ell T}+\vec{p}_{\nu T}\right)^{2}$

Contours of the statistical significance

Signal observability

- Combine point I \& II:

- Possible to achieve 5 statistical significance

Spin determination

- $\tanh \left(\frac{\Delta y_{t \bar{t}}}{2}\right)=\tanh \left(\frac{\left|y_{t}-y_{\bar{t}}\right|}{2}\right)=\cos \theta^{*}$
- θ^{*} - is the production angle.
- y : The rapidity of the top $y=\frac{1}{2} \log \left[\frac{E+p_{z}}{E-p_{z}}\right]$
- $P_{T}^{b l}$: Transverse momentum of the leptonically decaying top quark

$$
p p \rightarrow t \bar{t} \rightarrow b j_{1} j_{2} \bar{b} \ell^{-} \bar{\nu}+\text { h.c. }
$$

where $\ell=e, \mu$ and $j_{1,2}$ are light-quark jets.

- They are all Lorentz invariant along the boost direction.

Spin determination

- $\tanh \left(\frac{\Delta y_{t \bar{t}}}{2}\right)=\tanh \left(\frac{\left|y_{t}-y_{\bar{t}}\right|}{2}\right)=\cos \theta^{*}$
- θ^{*} - is the production angle.
- y : The rapidity of the top $y=\frac{1}{2} \log \left[\frac{E+p_{z}}{E-p_{z}}\right]$
- $P_{T}^{b l}$: Transverse momentum of the leptonically decaying top quark

$$
p p \rightarrow t \bar{t} \rightarrow b j_{1} j_{2} \widehat{\bar{\ell} \ell} \bar{\nu}+\text { h.c. }
$$

where $\ell=e, \mu$ and $j_{1,2}$ are light-quark jets.

- They are all Lorentz invariant along the boost direction.

Numerical results

$$
m_{Y}=300 \mathrm{GeV} \text { and } m_{X}=100 \mathrm{GeV} .
$$

- Coupling $\mathrm{aL}=\mathrm{I}$ and $\mathrm{aR}=0$
- \# of events of all models are normalized to that of model I at 14 TeV with integrated luminosity $100 / \mathrm{fb}$
- Detector effects are considered by passing parton-level events into PYTHIA.

χ^{2} analysis

3-bin results

A good variable for discriminating model 4 from models I,2 and 3 .

	(model A, model B)						
Variable	$(1,2)$	$(1,3)$	$(1,4)$	$(2,3)$	$(2,4)$	$(3,4)$	
$P_{T}^{b \ell}$	5.97	2.36	159.51	4.6	195.3	170.21	
$\tanh \left(\frac{\Delta y_{t \bar{t}}}{2}\right)$	28.88	28.62	24.98	0.33	6.67	6.73	
All combined	28.88	28.62	159.51	4.6	195.3	170.21	

in units of standard deviations

χ^{2} analysis

3-bin results

A good variable for discriminating model I from models 2 and 3 .

$$
\begin{aligned}
\text { scalar } Y(\operatorname{spin} 0): & \frac{d \sigma}{d \cos \theta^{*}} \propto 1-\cos ^{2} \theta^{*} \\
\text { fermion } Y\left(\operatorname{spin} \frac{1}{2}\right): & \frac{d \sigma}{d \cos \theta^{*}} \propto 2+\beta_{Y}^{2}\left(\cos ^{2} \theta^{*}-1\right)
\end{aligned}
$$

	(model A, model B)					
Variable	$(1,2)$	$(1,3)$	$(1,4)$	$(2,3)$	$(2,4)$	$(3,4)$
$P_{T}^{b e}$	5.97	2.36	159.51	4.6	195.3	170.21
$\tanh \left(\frac{\Delta y_{\text {fi }}}{2}\right)$	28.88	28.62	24.98	0.33	6.67	6.73
All combined	28.88	28.62	159.51	4.6	195.3	170.21

in units of standard deviations

Conclusion

- A model-independent and systematic analysis of the top partners with spin $0, \mathrm{I} / 2$ and I is performed. In particular, the systematic analysis of the spin I top partner is of the first time.
- At 14 TeV if the scalar top partner is lighter than 400 GeV for small mass splitting or $\mathrm{Mx}<100 \mathrm{GeV}$ and $\mathrm{My}<600 \mathrm{GeV}$ for large mass splitting it is possible to observe the scalar top partner.
- Two variables are considered for spin determination. Discrimination between combinations 2 and 3 is still difficult and one cannot achieve a 5 sigma standard deviation.

Thank you!

Backup slides

Current Bounds

- CDF^{\dagger} : $4.8 / \mathrm{fb}$ data, exclude fermionic Y particles below 360 GeV assuming a large hierarchy $m_{x} \ll m_{Y}$. This can be translated into a limit $m_{Y}>260$ for scalar Y. $\quad \dagger_{\text {Phys.Rev.Lett. }} 106$ (2011) 191801 by T. Aaltonen et al.
- $m_{Y} \gtrsim 240 \mathrm{GeV}$ if $m_{Y}-m_{X} \approx m_{t}$
- ATLAS* : Based on I/fb data: exclude a fermionic Y with mass below 420 GeV (for $m_{x} \ll m_{Y}$). This can be translated into a bound $m_{Y} \gtrsim 500 \mathrm{GeV}$ for vector Y particles. *Phys.Rev.Lett. 108 (2012) 041805 by G. Aad et al.
- For any Y spin, there is no limit for very small mass difference, $m_{Y}-m_{x} \lesssim m_{t}+10 \mathrm{GeV}$

Simulations

- To simulate the detector acceptance:

$$
\begin{array}{ccc}
p_{T}^{\ell}>20 \mathrm{GeV}, & \left|\eta_{\ell}\right|<2.5, & \Delta R_{\ell}>0.3, \\
E_{T}^{j}>25 \mathrm{GeV}, & \left|\eta_{j}\right|<2.5, & E_{T}>25 \mathrm{GeV}, \\
E_{T}^{b}>30 \mathrm{GeV}, & \left|\eta_{b}\right|<2.5, & \Delta R_{j}, \Delta R_{b}>0.4, \\
\text { jet smearing: } & \frac{\Delta E_{j}}{E_{j}}=\frac{50 \%}{\sqrt{E_{j}(\mathrm{GeV})}} & b \text {-tagging efficiency } \epsilon_{b}=60 \% .
\end{array}
$$

- For signals:

$$
\begin{aligned}
& p p \rightarrow Y \bar{Y} \rightarrow t X \bar{t} X \rightarrow b j_{1} j_{2} \bar{b} \ell^{-} \bar{\nu} X X+\text { h.c. } \\
& \text { where } \ell=e, \mu \text { and } j_{1,2} \text { are light-quark jets. }
\end{aligned}
$$

- Use CalcHEP to simulate the signals at the parton level and then pass them into PYTHIA for detector effects.

Production

- Diagrams with gluon gluon initial state dominate at the LHC
- Models 2 and 3 do not have four-field interaction (renormalizability).

