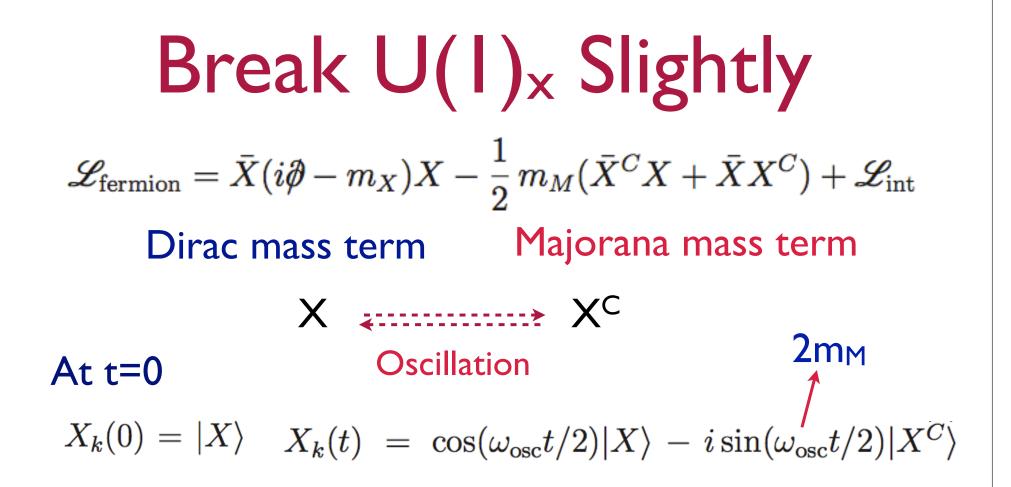

Oscillating Asymmetric Dark Matter

Hai-Bo Yu University of Michigan, Ann Arbor

University of Pittsburg Pheno 2012 05/08/2012

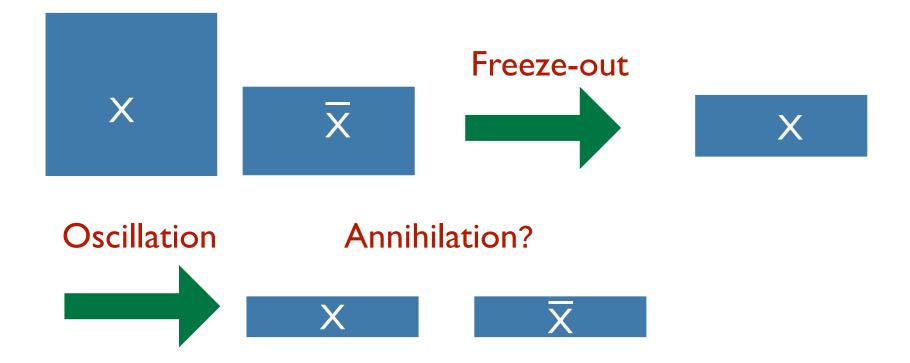
Sean Tulin, HBY, Kathry Zurek: arXiv: 1202.0283 [hep-ph]

Asymmetric Dark Matter



 $\Omega_X/\Omega_B \sim 5$

- Baryon number asymmetry $\eta_B = (n_B n_{\bar{B}})/n_\gamma \sim 6 \times 10^{-10}$
- Dark matter asymmetry $\eta_X = (n_X - n_{\bar{X}})/n_{\gamma} \sim \eta_B$ $m_X \sim 5m_B \sim 5 \text{ GeV}$



- Dark matter has conserved quantum numbers; U(I)X
- Dark matter is either a Dirac fermion or a complex scalar

If t_{osc} << t_f, ADM becomes symmetric before freeze-out
If t_{osc} >t_f, freezes out first; oscillation regenerates anti-DM

Oscillation after Freeze-out

A naive expectation: annihilation will occur as X oscillates to X^C

Interactions

$$\mathscr{L}_{\text{int}} = \frac{G_X}{\sqrt{2}} \,\bar{X} \Gamma^a X \,\bar{f} \Gamma_a f \qquad \Gamma^a = \{1, \gamma^5, \gamma^5 \gamma^\mu, \gamma^\mu, \sigma^{\mu\nu}\}$$

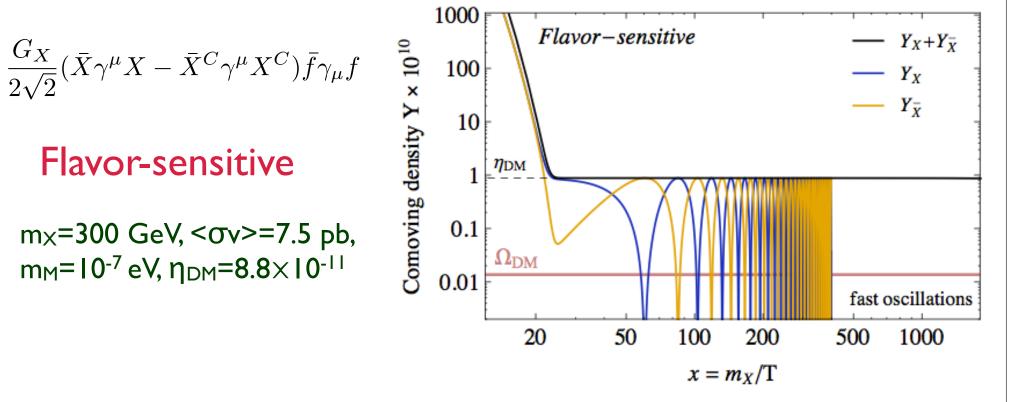
Dark Matter "Flavor" $\Psi \equiv$

$$\Psi \equiv (X, X^C)$$

$$\frac{G_X}{2\sqrt{2}}(\bar{X}X + \bar{X}^C X^C)\bar{f}f$$

Even under C
Flavor-blind

 $\frac{G_X}{2\sqrt{2}}(\bar{X}\gamma^{\mu}X - \bar{X}^C\gamma^{\mu}X^C)\bar{f}\gamma_{\mu}f$ Odd under C
Flavor-sensitive


Scalar, pseudo-scalar and axial-vector are flavor-blind
Vector and tensor are flavor-sensitive

Flavor-blind Interactions

- Anti-DM is regenerated by oscillation after freeze-out
- Annihilation occurs as expected
- Even heavy ADM can achieve correct relic density

Flavor-sensitive Interactions

- Anti-DM is regenerated by oscillation after freeze-out
- But annihilation DOES NOT happen!

A Simple Explanation

C =	$(-1)^{L+}$	S
-----	-------------	---

	C	S	L	flavor	total
scalar X	+		even	even	even
	—		odd	odd	even
fermion X	+	0 (odd)	even	even	odd
	—	0 (odd)		odd	odd
	+	1 (even)	odd	even	odd
	—	1 (even)	even	odd	odd

C-even interactions have symmetric flavor wavefunction
C-odd interactions have antisymmetric flavor wavefunction

But only one state appears $X_{k}(t) = \cos(\omega_{osc}t/2)|X\rangle - i\sin(\omega_{osc}t/2)|X^{C}\rangle$ $X_{k}(t) \otimes X_{k'}(t) + X_{k'}(t) \otimes X_{k}(t) \neq 0$ $X_{k}(t) \otimes X_{k'}(t) - X_{k'}(t) \otimes X_{k}(t) = 0$ (to leading order) Anti-symmetric flavor wavefunction vanishes!

Summary

- Oscillating ADM is very interesting; new phenomenologies; new possibilities for model building
- The "flavor" effect is important for OADM
- To catch the quantum coherence effect, one has to use density matrix formalism (the usual Boltzmann equation does not work)