

Search for Supersymmetry in Events with Photons and Missing Transverse Energy

Yueh-Feng Liu

Carnegie Mellon University

On behalf of CMS Collaboration

Phenomenology 2012 Symposium 7-9 May 2012, Pittsburgh

SUSY Model

- Gauge Mediated Supersymmetry Breaking (GMSB)
- Gravitino is the lightest SUSY particle (LSP) in GMSB
- Consider Neutralino is the next-to-lightest SUSY particle (NLSP)
- Neutralino mass eigenstates are mixtures of Bino, Wino, and Higgsinos
- If R-parity is conserved, SUSY particles are produced in pair

Analysis Channels

Analysis	Photon	Jet	Bkg.	Bkg. Estimation Method
Single Photon	Et > 80 GeV $ \eta < 1.44$	Et > 30 GeV >= 2 Jets HT > 450 GeV $ \eta < 2.6$	QCD EWK $W/Z/t \overline{t} + \gamma$	Data-driven + MC
Di-Photon	Et > 40, 25 GeV $ \eta < 1.44$	Et > 30 GeV $ \eta < 2.6$	QCD EWK	Data-driven

Analysis at CMS: CMS PAS SUS-12-001

Identifications and Event Selections

Di-Photon Analysis

Carnegie

University

Estimation of MET Background (Electroweak)

Di-Photon Analysis

- Fit Z peak in *ee* and $e\gamma$ invariant mass spectra to get the numbers of events, respectively.
- $\frac{N_{e_{\gamma}}(Z \to ee)}{N_{ee}(Z \to ee)} = \frac{2f_{e \to \gamma}}{(1 f_{e \to \gamma})} \quad f_{e \to \gamma} : 0.015 + /- 0.002(stat.) + /- 0.005(syst.)$
- Scale the MET distribution of $e\gamma$ sample by $\frac{f_{e \to \gamma}}{(1 f_{e \to \gamma})}$

Estimation of MET Background (QCD)

Di-Photon Analysis

- Use both control samples to estimate QCD MET distribution.
- If there is no TRUE MET in the event, the resolution of hadronic activity in the event will dominate the MET.
- Take the di-Jet Pt spectrum from candidate sample as a measure of hadronic activity in the event.
- Reweight the shape of MET distribution of control samples by using the di-Jet Pt ratio of candidate sample and control samples.
- Normalize the reweighted MET distribution to low MET region (below 20 GeV) of candidate events.

- The strategy is very similar to Di-photon's
- Reweight the control sample (fake photon) to estimate QCD background
- Apply $f_{e \to \gamma}$ to the control sample (electron) to estimate background $e \to \gamma$
- ISR/FSR $(W/Z/t\bar{t})$ contributions are determined directly from MC

MET Distribution (Di-Photon)

Number of events with MET > 100 GeV

Туре	Events	scal. error	norm. error
$\gamma\gamma$ candidates	11		
ff QCD background	10.1 ± 4.2	±0.3	±0.03
ee QCD background	14.7 ± 3.1	± 0.1	±0.03
EWK background	2.9 ± 1.0	±0.0	±0.9
Total background (ff)	13.0 ± 4.3		

 No excess beyond Standard Model

Carnegie

University

Proved any Language

MET Distribution (Single Photon)

	$E_{\rm T}^{\rm mi}$	$ss \ge 100$	GeV	E _T ^{mi}	$ss \ge 200$	GeV	$E_{\rm T}^{\rm mis}$	$ss \ge 350$	GeV
$\geq 1\gamma$, ≥ 2 jets		(stat.)	(syst.)		(stat.)	(syst.)		(stat.)	(syst.)
QCD (from data)	607.7	± 46.7	± 54.0	90.7	± 16.4	± 9.9	6.8	± 4.1	± 0.8
$e ightarrow \gamma$ (from data)	17.2	± 0.3	±7.2	3.5	± 0.2	± 1.5	0.4	± 0.01	± 0.2
FSR/ISR(W,Z)	27.6	± 3.2	± 27.6	10.4	± 2.0	± 10.4	1.6	± 0.8	±1.6
FSR/ISR(tt)	3.8	± 0.9	± 3.8	0.8	± 0.4	± 0.8	< 0.01	< 0.01	< 0.01
total SM estimate	656.4	± 46.9	± 92.7	105.5	± 16.5	± 22.6	8.7	± 4.2	± 2.5
Data	615			63			4		

Yueh-Feng Liu @ PHENO 2012

Carnegie

University

Limit Setting

Carn	legie
Mell	on
Univ	ersity

Systematics	Uncertainty [%]	
Integrated luminosity	4.5	
Pile-up study	2.4	
Photon Data/MC scale	2.6	
Photon/Electron ID	0.5	
Jet energy scale	2	
Renormalization scale	4 - 28	
PDF error on cross section	4 - 66	
PDF error on acceptance	0.1 - 9	

Result and Interpretations

Di-Photon Analysis

Carnegie

University

Result and Interpretations

Single Analysis

Carnegie

University

- We have completed searches for GMSB SUSY with single and di-photon final state using all 2011 data.
- Data-driven methods are used to estimate dominate backgrounds.
- We observe no excess beyond Stand Model.
- We set the 95% CL upper limit on cross sections and exclude gluino and squark masses below

~1TeV (bino-like neutralino)

~750 GeV (wino-like neutralino).

Backup Slides

Acceptance times Efficiency

Di-Photon Analysis

Carnegie Mellon

University

Acceptance times Efficiency

Single Photon Analysis

Carnegie

University

Result and Interpretations

Carnegie

University

Identifications

Photons :

- In barrel region (|Eta| < 1.4442)
- leading photon Et > 40 GeV, trailing photon Et > 25 GeV
- combined Isolation (DR03 cone) < 6 GeV
- ✤ H/E < 0.05</p>
- σ_{iηiη}<0.011
- No PixelSeed
- r9 < 1.0
 </p>
- Fake Photons:
 - Identical to photons but reverse combined Isolation (6 < Combined Isolation < 20 GeV) OR
 - $0.011 < \sigma_{i\eta i\eta} < 0.014$

Single Photon case:

6 < Combined Isolation < min (30, 0.3*Pt)

- Electrons :
 - Identical to photons but requiring PixelSeed

Carnegie

Universitv

Identifications and Event Selections

- Jets:
 - AK5 L1FastL2L3 corrected PFJet
 - Pt > 30 GeV/c
 - → |Eta| < 2.6
 </p>
 - Neutral Hadron Fraction < 0.99
 - Neutral EM Fraction < 0.99
 - Number of Constituents > 1
 - Charged Hadron Fraction > 0
 - Charged EM Fraction < 0.99
 - Charged Multiplicity > 0
 - dR between photons and jets >= 0.5 if require 1+jet
 - Jet cleaning cone size dR = 0.5
 - Selected EM objects must be separated by dR > 0.6
 - For no jet requirement case, dPhi between selected EM objects > 0.05
 - Apply invariant mass 81- 101 GeV cut to ee sample

Primary Vertex Selection:

Requiring at least one primary vertex

- Not fake
- Ndof > 4

ATLAS Result

Carnegie

University