Lepton Flavor Violation at the Large Hadron Collider

Rouzbeh Allahverdi¹, Bhaskar Dutta², Teruki Kamon^{2,3}, <u>Abram Krislock^{2,4}</u>

¹Department of Physics and Astronomy, University of New Mexico

²Department of Physics & Astronomy, Mitchell Institute for Fundamental Physics, Texas A&M University

³Department of Physics, Kyungpook National University

⁴Department of Physics, AlbaNova, Stockholm University

Phenomenology Symposium 2012

LFV at LHC 1/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Outline

LFV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

LFV at LHC 2/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

SUSY

- Flavor Problem: SUSY breaking terms can induce FCNC's
- Simplest assumption to solve it: SUSY breaking masses are flavor diagonal

mSUGRA

Minimal Supergravity model

- m_0 , $m_{1/2}$, A_0 , tan β , sign(μ)
- 3rd generation sfermions split from others
- Typically: $m_{ ilde{ au}_1} < m_{ ilde{ au}} \sim m_{ ilde{ extsfell}}$
- ► No LFV...

LFV at LHC 3/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified.. ...but neutrinos oscillate, ublick mathematica LEVI

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロット 御マ キャネ 明マ キョン

SUSY

- Flavor Problem: SUSY breaking terms can induce FCNC's
- Simplest assumption to solve it: SUSY breaking masses are flavor diagonal

mSUGRA

Minimal Supergravity model

- m_0 , $m_{1/2}$, A_0 , tan β , sign(μ)
- 3rd generation sfermions split from others
- Typically: $m_{ ilde{ au}_1} < m_{ ilde{ au}} \sim m_{ ilde{ extbf{e}}}$
- No LFV...

LFV at LHC 3/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified.. ...but neutrinos oscillate,

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロット 御マ キャネ 明マ キョン

$\begin{array}{c} V_{e} & \swarrow & V_{\mu} \\ & & & & \Delta m_{21}^{2} = (7.59 + -0.21) \times 10^{-5} \ eV^{2} \\ & & & V_{\tau} \\ & & & \Delta m_{32}^{2} = (2.43 \pm 0.13) \times 10^{-3} \ eV^{2} \end{array}$

Seesaw masses

- ► Massive right handed neutrinos (ν^c) have masses: M_ν = M_D^T(M_R)⁻¹M_D
- Flavor mixings in \mathcal{M}_R and \mathcal{M}_D
- Right handed neutrino mass $\sim v_{B-L} \sim 10 15 \text{ GeV}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

- ν^c active at large momentum scale $\geq v_{B-L}$
- Above v_{B-L} slepton mass terms feel effect of ν^c

\Rightarrow Generates LFV!!

LFV at LHC 4/12

Abram Krislock May 5 Pheno 2012

FV Motivation

nSUGRA is flavor unified...

...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

$\begin{array}{c} V_{e} & \swarrow & V_{\mu} \\ & & & \Delta m_{21}^{2} = (7.59 + -0.21) \times 10^{-5} \text{ eV}^{2} \\ & & V_{\tau} & \Delta m_{32}^{2} = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^{2} \end{array}$

Seesaw masses

- ► Massive right handed neutrinos (ν^c) have masses: $\mathcal{M}_{\nu} = \mathcal{M}_{D}^{T} (\mathcal{M}_{R})^{-1} \mathcal{M}_{D}$
- Flavor mixings in \mathcal{M}_R and \mathcal{M}_D
- Right handed neutrino mass $\sim v_{B-L} \sim 10 15 \text{ GeV}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

- ν^c active at large momentum scale $\geq v_{B-L}$
- Above v_{B-L} slepton mass terms feel effect of ν^c

\Rightarrow Generates LFV!!

LFV at LHC 4/12

Abram Krislock May 5 Pheno 2012

FV Motivation

nSUGRA is flavor unified...

...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

$\begin{array}{c} V_{e} & \swarrow & V_{\mu} \\ & & & & \\ V_{\tau} & & \Delta m_{21}^{2} = (7.59 + -0.21) \times 10^{-5} \text{ eV}^{2} \\ & & & \\ V_{\tau} & & \Delta m_{32}^{2} = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^{2} \end{array}$

Seesaw masses

- ► Massive right handed neutrinos (ν^c) have masses: $\mathcal{M}_{\nu} = \mathcal{M}_{D}^{T} (\mathcal{M}_{R})^{-1} \mathcal{M}_{D}$
- Flavor mixings in \mathcal{M}_R and \mathcal{M}_D
- ► Right handed neutrino mass ~ v_{B-L} ~ 10 15 GeV

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○ ● ●

- ν^c active at large momentum scale $\geq v_{B-L}$
- Above v_{B-L} slepton mass terms feel effect of ν^c

\Rightarrow Generates LFV!!

LFV at LHC 4/12

Abram Krislock May 5 Pheno 2012

FV Motivation

nSUGRA is flavor unified...

...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

$\begin{array}{c} V_{e} & \swarrow & V_{\mu} \\ & & & & \\ V_{\tau} & & \Delta m_{21}^{2} = (7.59 + -0.21) \times 10^{-5} \text{ eV}^{2} \\ & & & \\ V_{\tau} & & \Delta m_{32}^{2} = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^{2} \end{array}$

Seesaw masses

- ► Massive right handed neutrinos (ν^c) have masses: $\mathcal{M}_{\nu} = \mathcal{M}_{D}^{T} (\mathcal{M}_{R})^{-1} \mathcal{M}_{D}$
- Flavor mixings in \mathcal{M}_R and \mathcal{M}_D
- Right handed neutrino mass $\sim v_{B-L} \sim 10 15 \text{ GeV}$
- ▶ *v^c* active at large momentum scale ≥ *v_{B-L}*
- ► Above v_{B-L} slepton mass terms feel effect of ν^c

\Rightarrow Generates LFV!!

LFV at LHC 4/12

Abram Krislock May 5 Pheno 2012

FV Motivation

nSUGRA is flavor unified...

...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

$\begin{array}{c} V_{e} & \swarrow & V_{\mu} \\ & & & & \\ V_{\tau} & & \Delta m_{21}^{2} = (7.59 + -0.21) \times 10^{-5} \text{ eV}^{2} \\ & & & \\ V_{\tau} & & \Delta m_{32}^{2} = (2.43 \pm 0.13) \times 10^{-3} \text{ eV}^{2} \end{array}$

Seesaw masses

- ► Massive right handed neutrinos (ν^c) have masses: $\mathcal{M}_{\nu} = \mathcal{M}_{D}^{T} (\mathcal{M}_{R})^{-1} \mathcal{M}_{D}$
- Flavor mixings in \mathcal{M}_R and \mathcal{M}_D
- Right handed neutrino mass $\sim v_{B-L} \sim 10 15 \text{ GeV}$
- ▶ *v^c* active at large momentum scale ≥ *v_{B-L}*
- ► Above v_{B-L} slepton mass terms feel effect of ν^c

\Rightarrow Generates LFV!!

LFV at LHC 4/12

Abram Krislock May 5 Pheno 2012

FV Motivation

nSUGRA is flavor unified...

...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Slepton Mass Matrix

mSUGRA

$$\mathcal{M}_{\tilde{\ell}}^2 = \begin{pmatrix} \mathcal{M}_{LL}^2 & \mathcal{M}_{LR}^2 \\ \mathcal{M}_{LR}^2 & \mathcal{M}_{RR}^2 \end{pmatrix} \qquad \mathcal{M}_{LL}^2 = \mathcal{M}_{RR}^2 = m_0^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$\mathcal{M}_{LR}^2 = \operatorname{diag}\left[m_\ell (\mathcal{A}_\ell + \mu \tan \beta)\right] \qquad \qquad \mathcal{A}_\ell = \mathcal{A}_0$$

Introduce LFV in the (2,3) = $(\tilde{\mu}, \tilde{\tau})$ component of \mathcal{M}_{RR}^2 . $\delta_{RR, \text{LFV}} = \frac{[\mathcal{M}_{RR}^2]_{23}}{[\mathcal{M}_{RR}^2]_{33}} = \frac{m_{\text{LFV}, 23}^2}{m_{\tilde{\tau}_R}^2}$ Lightest slepton, $\tilde{\ell}_1$, is an admixture of $\tilde{\mu}$ and $\tilde{\tau}$ states.

LFV at LHC 5/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements

Transfer Function

Slepton Mass Matrix

mSUGRA

$$\begin{aligned} \mathcal{M}_{\tilde{\ell}}^2 &= \begin{pmatrix} \mathcal{M}_{LL}^2 & \mathcal{M}_{LR}^2 \\ \mathcal{M}_{LR}^2 & \mathcal{M}_{RR}^2 \end{pmatrix} \quad \mathcal{M}_{LL}^2 = \mathcal{M}_{RR}^2 = m_0^2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \\ \mathcal{M}_{LR}^2 &= \operatorname{diag}\left[m_\ell(\mathcal{A}_\ell + \mu \tan \beta)\right] \qquad \qquad \mathcal{A}_\ell = \mathcal{A}_0 \end{aligned}$$

Introduce LFV in the (2,3) = ($\tilde{\mu}$, $\tilde{\tau}$) component of \mathcal{M}_{RR}^2 . $\delta_{RR,LFV} = \frac{\left[\mathcal{M}_{RR}^2\right]_{23}}{\left[\mathcal{M}_{RR}^2\right]_{33}} = \frac{m_{LFV,23}^2}{m_{\tilde{\tau}_R}^2}$

Lightest slepton, $\tilde{\ell}_1$, is an admixture of $\tilde{\mu}$ and $\tilde{\tau}$ states.

LFV at LHC 5/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements

LFV signal and background

Decay Chain subsystem: $\tilde{\chi}_2^0 - \tilde{\ell}_1 - \tilde{\chi}_1^0$

- Mostly \(\tau\) final states
- Small amount of LFV $\tau\mu$ final states
- $\tau\mu$ final states also arise from leptonic τ decay

Use a General Technique: Any LFV! $\mu au \; oldsymbol{e} au \; oldsymbol{\cdot}$

LFV at LHC 6/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

LFV signal and background

Decay Chain subsystem: $\tilde{\chi}_2^0 - \tilde{\ell}_1 - \tilde{\chi}_1^0$

- Mostly $\tau \tau$ final states
- Small amount of LFV $\tau\mu$ final states
- $\tau\mu$ final states also arise from leptonic τ decay

Use a General Technique: Any LFV! $\mu au \; {m e} au \; \cdots$

LFV at LHC 6/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロット 中国・ キョット 中国・ トロッ

LFV signal and background

Decay Chain subsystem: $\tilde{\chi}_2^0 - \tilde{\ell}_1 - \tilde{\chi}_1^0$

- Mostly $\tau \tau$ final states
- Small amount of LFV $\tau\mu$ final states
- $\tau\mu$ final states also arise from leptonic τ decay

Use a General Technique: Any LFV!

$$\mu \tau \ \boldsymbol{e} \tau \ \cdots$$

LFV at LHC 6/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

mass measurements of \$\tilde{\chi}_2^0\$, \$\tilde{\ell}_1\$, and \$\tilde{\chi}_1^0\$
2) Model the τµ BG from leptonic τ decay.
new technique: transfer function
3) Extract the LFV τµ signal.

Study by simulating $\sqrt{s} = 14$ TeV LHC.

▶ **Use** SPheno, PYTHIA, PGS4

LFV at LHC 7/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

mass measurements of \$\tilde{\chi}_2^0\$, \$\tilde{\ell}_1\$, and \$\tilde{\chi}_1^0\$
2) Model the τμ BG from leptonic τ decay.
new technique: transfer function
3) Extract the LFV τμ signal.

Study by simulating $\sqrt{s} = 14$ TeV LHC.

▶ **Use** SPheno, PYTHIA, PGS4

LFV at LHC 7/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

mass measurements of χ˜₂⁰, ℓ˜₁, and χ˜₁⁰
2) Model the τμ BG from leptonic τ decay.
new technique: transfer function
3) Extract the LFV τμ signal.

Study by simulating $\sqrt{s} = 14$ TeV LHC.

▶ **Use** SPheno, PYTHIA, PGS4

LFV at LHC 7/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

mass measurements of *x*⁰₂, *ℓ*₁, and *x*⁰₁
2) Model the *τ*μ BG from leptonic *τ* decay.

- new technique: transfer function
- 3) Extract the LFV $\tau\mu$ signal.

Study by simulating $\sqrt{s} = 14$ TeV LHC.

▶ **Use** SPheno, PYTHIA, PGS4

LFV at LHC 7/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Dominant production at LHC is $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, or $\tilde{q}\tilde{q}$

LFV at LHC 8/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロト・日本・モート モー シタウ

Dominant production at LHC is $\tilde{g}\tilde{g}$, $\tilde{g}\tilde{q}$, or $\tilde{q}\tilde{q}$

LFV at LHC 8/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロト・日本・日本・日本・日本・日本

Abram Krislock May 5 Pheno 2012

_FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

してい 「「」 (山下・山下・山下・山下・

Abram Krislock May 5 Pheno 2012

_FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Abram Krislock May 5 Pheno 2012

_FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つ へ ()・

Abram Krislock May 5 Pheno 2012

_FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ つ へ ()・

Abram Krislock May 5 Pheno 2012

_FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ つ へ ()・

Cuts:

LFV at LHC 8/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Ditau Invariant Mass

LFV at LHC 9/12

Abram Krislock May 5 Pheno 2012

LFV Motivation mSUGRA is flavor unified... ...but neutrinos oscillate.

IEV @ IHC

Considerations Mass Measurements Transfer Function

Conclusions

Mass Measurement from LHC Data

- ► Functional Form: $m_{\tau\tau}^{\text{end}} = f(m_{\tilde{\tau}_1}, m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0})$
- Combine with $p_{T,\tau}$ observables.
- Invert Functional Forms to solve: m_{˜t1}, m_{x⁰}, m_{x⁰}

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

Ditau Invariant Mass

LFV at LHC 9/12

Abram Krislock May 5 Pheno 2012

-FV MOtIVATION mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

Mass Measurement from LHC Data

- ► Functional Form: $m_{\tau\tau}^{\text{end}} = f(m_{\tilde{\tau}_1}, m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0})$
- Combine with $p_{T,\tau}$ observables.

► Invert Functional Forms to solve: m_{˜1}, m_{˜x1}⁰, m_{˜x2}⁰

Di-Tau and Tau-Mu Invariant Mass

LFV at LHC 10/12

Abram Krislock May 5 Pheno 2012

...but neutrinos oscillate

Transfer Function

LFV signal

Back to the LHC Data: Use the transfer function, convert $m_{\tau\tau}$ to $m_{\tau\mu}^{\text{transfer}}$.

LFV at LHC 11/12

Abram Krislock May 5 Pheno 2012

_FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロト・西ト・山下・山下・山下・山下

Conclusions

New Technique: Transfer Function

- $\delta_{RR,LFV} = 15\% \Rightarrow Excess$
- Ruled out mSUGRA benchmark:
 - $\mathcal{L} = 1000 \text{ fb}^{-1} \Rightarrow \sim 2\sigma$ with systematics.
 - Same significance at L = 300 fb⁻¹ without systematics.
 - Let's reduce those systematics!!!
- Doesn't have to be mSUGRA!

arXiv:1203.3276

LFV at LHC 12/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

Sac

Extra Numbers

- ► $m_0 = 250 \text{ GeV}, m_{1/2} = 350 \text{ GeV}, A_0 = 0, \tan \beta = 40,$ and $\mu > 0$.
- Statistical @ $\mathcal{L} = 1000(300) \text{ fb}^{-1}$.
- Systematic: Jet Energy Scale $\pm 3\%$.

LFV at LHC 12/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Particle Mass	Solution One	Solution Two
$ ilde{ au}_1$: 186.7	$181.5 \pm 3.7 (5.1) \pm 4.1$	$205.8 \pm 5.9 (6.1) \pm 5.7$
$ ilde{\chi}_1^{0}$: 141.5	$140.6\pm 5.4(6.5)\pm 6.2$	$151.4 \pm 6.4 (8.6) \pm 6.3$
$ ilde{\chi}_2^0$: 265.8	$265.3\pm 6.2(8.5)\pm 7.3$	$278.9 \pm 9.2 (11.7) \pm 9.0$
$\delta_{RR,LFV} = 15\%$	2.2σ (1.7 σ) excess	1.6 σ (1.2 σ) excess

LFV at LHC 12/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

LFV at LHC 12/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function

Conclusions

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つへぐ

LFV at LHC 12/12

Abram Krislock May 5 Pheno 2012

FV Motivation

mSUGRA is flavor unified... ...but neutrinos oscillate, which motivates LFV!

LFV @ LHC

Considerations Mass Measurements Transfer Function