Asymmetric Dark Matter in a Stueckelberg Extension

Gregory Peim

Department of Physics, Northeastern University, Boston, MA 02115, USA

PHENO 2012

with Wan-Zhe (Vic) Feng and Pran Nath arXiv: 1204.5752 [hep-ph]

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ ∃目 のへで

3 Depleting the Symmetric Component

4 Model Detection

∃ ► < ∃ ►</p>

-

= 200

Motivation

- Baryon and anti-Baryon asymmetry with a non-vanishing B-L
 - Possible mechanisms include: Baryogenesis, Leptogenesis
 - For this talk, we assume a B L excess has been generated already in the early universe
- Cosmic Coincidence
 - $100\Omega_{
 m B}h_0^2=2.255\pm0.054$ [WMAP-7; Astrophys. J. Suppl. 192, 18 (2011)]
 - $\Omega_{
 m DM}\,h_0^2=0.1126\pm0.0036$ [WMAP-7; Astrophys. J. Suppl. 192, 18 (2011)]

◆□ ▶ ◆□ ▶ ◆ = ▶ ◆ = ▶ ● = ● ● ●

•
$$\frac{\Omega_{\rm DM} h_0^2}{\Omega_{\rm B} h_0^2} = 4.99 \pm 0.20 \approx 5$$

AsyDM Overview Stueckelberg Overview AsyDM Model Overview AsyDM Mass

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ ∃|= のQ@

Basic Overview (Part I):

Assuming there is a B - L excess existing already in the early universe.

- One issue is to come up with a mechanism to create the asymmetry in dark mater from the B L asymmetry
- Another issue is how to deplete the symmetric component of dark matter generated via thermal processes
- i.e., asymmetric dark matter (AsyDM)

AsyDM Overview Stueckelberg Overview AsyDM Model Overview AsyDM Mass

Basic Overview (Part II):

Such a mechanism can be accomplished through a Stueckelberg $U(1)_X$ extension¹ since it ...

- ... is anomaly free (SM)
- 2 ... can be gauged

•
$$L_e-L_\mu, \ L_\mu-L_\tau, \ L_e-L_\tau, \ ext{ or } B-L$$

- Summetric component of DM
- ... does not suffer from oscillations of DM to anti-DM
 - Such oscillations could wash out the asymmetric DM via pair annihilation
 - Oue to gauge invariance, oscillations are forbidden using this extension

AsyDM Overview Stueckelberg Overview AsyDM Model Overview AsyDM Mass

Basic Overview (Part II):

Such a mechanism can be accomplished through a Stueckelberg $U(1)_X$ extension¹ since it ...

- ... is anomaly free (SM)
- 2 ... can be gauged

 $L_{\mu} - L_{\tau}$ or B - L

- ... leads to terms in the Lagrangian that annihilate the symmetric component of DM
- ... does not suffer from oscillations of DM to anti-DM
 - Such oscillations could wash out the asymmetric DM via pair annihilation
 - Oue to gauge invariance, oscillations are forbidden using this extension

AsyDM Overview Stueckelberg Overview AsyDM Model Overview AsyDM Mass

AsyDM Model Overview

In Lagrangian include a term that transfers B - L from matter to dark matter², i.e.

$$\mathcal{L}_{\mathrm{asy}} = rac{1}{M_{\mathrm{asy}}^n} X^k \mathcal{O}_{\mathrm{asy}}$$

- $\bullet~M_{\rm asy}$ is the scale of interaction and decouples at ${\it T}_{\rm int}$
- \mathcal{O}_{asy} is made up of SM fields with a non-vanishing B-L quantum number
- X^k is the dark matter fields with an opposite B L quantum number (could be a fermion or boson)
- B L transfer (SM) examples include³

•
$$\frac{1}{M_{asy}^3}\psi^3 LH$$
, $\frac{1}{M_{asy}^3}\phi^2 (LH)^2$, $\frac{1}{M_{asy}^5}\psi^3 Lqd^c$, or $\frac{1}{M_{asy}^5}\psi^3 u^c d^c d^c$

²Kaplan, Luty, and Zurek, Phys. Rev. D **79**, 115016 (2009)

AsyDM Overview Stueckelberg Overview AsyDM Model Overview AsyDM Mass

AsyDM Model Overview (cont.)

At temperatures above the decoupling of the interaction, the asymmetry in the number density of particle i is given by

$$\begin{split} n_i - n_{\overline{i}} &= \frac{g_i}{2\pi^2} \int_0^\infty \mathrm{d}q q^2 \left[(e^{(E_i(q) - \mu_i)/T)} \mp 1)^{-1} - (e^{(E_i(q) + \mu_i)/T)} \mp 1)^{-1} \right] \\ &\equiv \frac{g_i T^3}{6} \times \begin{cases} \beta \mu_i c_i(b) & \text{bosons} \,, \\ \beta \mu_i c_i(f) & \text{fermions} \,. \end{cases} \end{split}$$

In the ultra relativistic limit ($\beta m_i \ll 1$) and a weakly interacting plasma ($\beta \mu_i \ll 1$), where $\beta \equiv 1/T$, the asymmetry in the number density becomes

$$n_i - n_{\overline{i}} \sim \frac{g_i T^3}{6} \times \begin{cases} 2\beta \mu_i + \mathcal{O}((\beta \mu_i)^3) & \text{bosons}, \\ \beta \mu_i + \mathcal{O}((\beta \mu_i)^3) & \text{fermions}. \end{cases}$$

◆□▶ ◆帰▶ ◆∃▶ ◆∃▶ ∃|= のQ@

AsyDM Overview Stueckelberg Overview AsyDM Model Overview AsyDM Mass

AsyDM Mass

Letting *B* define the total baryon number in the Universe and *X* to be the total dark matter number, from the cosmic coincidence, we have $C = \frac{12}{3} + \frac{12}{3}$

$$\frac{\Omega_{\rm DM} h_0^2}{\Omega_{\rm matter} h_0^2} = \frac{X \cdot m_{\rm DM}}{B \cdot m_{\rm B}} \approx 5$$

Thus we get the DM mass to be

$$m_{
m DM} \approx 5 \cdot \frac{B}{X} \cdot 1 \ {
m GeV}$$

B and X can be written in terms of B - L by solving the chemical potentials by using:

- Conservation of charge or hypercharge
- Yukawa and gauge interactions
- Sphaleron interactions
- Conservation of B-L in \mathcal{L}_{asy}

X is determined based on the scale of $T_{\rm int}$. Possible Models include:

Model A		$T_{ m int} > T_{ m EWPT}$
Model B	SM	$T_{ m EWPT} > T_{ m int} > M_t$
Model C		$M_t > T_{ m int} > M_W$
Model D	2HD	$T_{ m int} > T_{ m EWPT}$
Model E	MSSM	$T_{ m int} > M_{ m SUSY}$
Model F		$T_1 > T_{ m int} > M_2 > T_{ m EWPT}$

- $T_{\rm EWPT}$ is the Electroweak phase transition scale
- M_t (M_W) is where the top (W) mass
- $M_{\rm SUSY}$ is the (largest) soft breaking mass
- T_1 is where the first two generation of sparticles drop out of the thermal bath
- *M*₂ is the mass of the third generation sparticles, the gauginos, the Higgses and the Higgsinos
- These model classes lead to DM mass $\lesssim 20 \text{ GeV}$

Basics Z' Constraints Symmetric Component Relic Density MSSM Extension

< □ > < 同 >

The Relic Density produced thermally is

$$\Omega_{\mathrm{DM}} h_0^2 = \Omega_{\mathrm{DM}}^{\mathrm{asy}} h_0^2 + \Omega_{\mathrm{DM}}^{\mathrm{sym}} h_0^2$$

To significantly deplete symmetric component require

 $\Omega_{\rm DM}^{\rm sym} h_0^2/\Omega_{\rm DM} h_0^2 < 0.1$

Accomplished in the Stueckelberg formalism by gauging $L_{\mu}-L_{\tau}$

 \bullet This requires DM to have non-vanishing μ or τ lepton number and the Lagrangian becomes

$$\mathcal{L} = \mathcal{L}_{\mathrm{SM}} + \mathcal{L}_{U(1)} + \mathcal{L}_{\mathrm{Stueckelberg}}$$

where in the unitary gauge for the massive Z' vector boson $\mathcal{L}_{\mathrm{int}}$ is given by

$$\mathcal{L}_{\rm int} = \frac{1}{2} g_C Q_C^{\psi} \bar{\psi} \gamma^{\mu} \psi Z_{\mu}' + \frac{1}{2} g_C Q_C^{f} \bar{f} \gamma^{\mu} f Z_{\mu}'$$

where f denotes μ, τ families

Basics **Z' Constraints** Symmetric Component Relic Density MSSM Extension

Z' Constraints $(g_{\mu} - 2)$

In our case we have a strong constraint on $g_\mu - 2$ and the Z' contribution is

$$\Delta a_{\mu} \equiv \Delta (g_{\mu}-2)/2 = rac{1}{2} \left(rac{1}{2} g_C Q_C^{\mu}
ight)^2 rac{m_{\mu}^2}{6\pi^2 M_{Z'}^2} = (3.0\pm0.8) imes 10^{-9}$$

We impose the constraint that the Z' boson contribution be less than the experimental (4 σ) deviation⁴

⁴K. Nakamura *et al.* J. Phys. G G37, 075021 (2010); Miller *et al.* Rept. Prog. Phys. 70, 1795 (2007) → 📃 = ∽ < , ~

This allows the symmetric component to be depleted via the process $\psi \bar{\psi} \rightarrow Z' \rightarrow f \bar{f}$. Relic Densities of $\psi, \bar{\psi}$ are governed by Boltzmann equations, i.e.

$$\frac{\mathrm{d}n_{\psi}}{\mathrm{d}t} + 3Hn_{\psi} = \langle \sigma v \rangle \left(n_{\psi} n_{\bar{\psi}} - n_{\psi}^{\mathrm{eq}} n_{\bar{\psi}}^{\mathrm{eq}} \right)$$
$$\frac{\mathrm{d}n_{\bar{\psi}}}{\mathrm{d}t} + 3Hn_{\bar{\psi}} = \langle \sigma v \rangle \left(n_{\psi} n_{\bar{\psi}} - n_{\psi}^{\mathrm{eq}} n_{\bar{\psi}}^{\mathrm{eq}} \right)$$

where $\langle \sigma v \rangle$ is the thermally averaged cross section. Allowing for AsyDM one can obtain significant effects to the relic density. However, in our model we are helped by the Breit-Wigner pole. Using

•
$$f_{\psi} \equiv n_{\psi}/(hT^3)$$

•
$$f_{\bar{\psi}} \equiv n_{\bar{\psi}}/(hT^3)$$

• *h* is the entropy degrees of freedom

•
$$x \equiv T/m_{\psi}$$

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔄 𝔄 𝔅

Basics Z' Constraints Symmetric Component Relic Density MSSM Extension

Thus the Boltzmann equations become

$$\begin{aligned} \frac{\mathrm{d}f_{\psi}}{\mathrm{d}x} &= \alpha \langle \sigma v \rangle (f_{\psi}f_{\bar{\psi}} - f_{\psi}^{\mathrm{eq}}f_{\bar{\psi}}^{\mathrm{eq}}) \\ \frac{\mathrm{d}f_{\bar{\psi}}}{\mathrm{d}x} &= \alpha \langle \sigma v \rangle (f_{\psi}f_{\bar{\psi}} - f_{\psi}^{\mathrm{eq}}f_{\bar{\psi}}^{\mathrm{eq}}) \\ \gamma &\equiv f_{\psi} - f_{\bar{\psi}} \\ \alpha(T) &= \sqrt{90} m_{\psi} M_{\mathrm{Pl}} \frac{h}{\sqrt{g}\pi} \left(1 + \frac{1}{4}\frac{T}{g}\frac{\mathrm{d}g}{\mathrm{d}T}\right) \end{aligned}$$

- γ is a constant and numerically it is $1.3 imes 10^{-10}$
- g is the degrees of freedom in the energy per unit volume at the photon temperature, i.e., $\rho = \frac{\pi^2}{30}gT^4$

•
$$\alpha(T) = 6.7 \times 10^{20} \text{ GeV}^2$$
 for $g = h = 68$ at $T = 0.5 \text{ GeV}$

for calculation of numerical constants see Feng, Nath, and GP, arXiv:1204.5752_ _

Basics Z' Constraints Symmetric Component Relic Density MSSM Extension

Thus the relic densities are

$$\Omega_{\psi} h_0^2 = 2.2 \times 10^{-11} \sqrt{g(x_f)} h(x_0, x_f) \left(\frac{T_{\gamma}}{2.73}\right)^3 \left(\frac{1}{\xi} - \frac{f_{\bar{\psi}}(x_f)}{\xi f_{\psi}(x_f)} e^{-\xi J(x_f)}\right)^{-1}$$
$$\Omega_{\bar{\psi}} h_0^2 = 2.2 \times 10^{-11} \sqrt{g(x_f)} h(x_0, x_f) \left(\frac{T_{\gamma}}{2.73}\right)^3 \left(\frac{f_{\psi}(x_f)}{\xi f_{\bar{\psi}}(x_f)} e^{\xi J(x_f)} - \frac{1}{\xi}\right)^{-1}$$

where

•
$$J(x_f) \equiv \int_{x_0}^{x_f} \langle \sigma v \rangle \, \mathrm{d}x$$

• $h(x_0, x_f) \equiv \frac{h(x_0)}{h(x_f)} \left[1 + \frac{1}{4} \left(\frac{T}{g} \frac{\mathrm{d}g}{\mathrm{d}T} \right)_{x_f} \right]^{-1}$
• $\xi \equiv \alpha(x_f)\gamma$

In the limit $\gamma, \xi
ightarrow 0$ one has $f_\psi(x_f)/f_{ar\psi}
ightarrow 1$ and thus

$$\Omega_{\bar{\psi}}h_0^2 = \Omega_{\psi}h_0^2 = 2.2 \times 10^{-11} \sqrt{g(x_f)}h(x_0, x_f) \left(\frac{T_{\gamma}}{2.73}\right)^3 \frac{1}{J(x_f)}$$

recovering the well-known result

Basics Z' Constraints Symmetric Component Relic Density MSSM Extension

An exhibition of the thermal relic density of the symmetric component of the relic density as a function of Z' mass for different couplings with $\gamma = 0$ (left) and $\gamma = 1.3 \times 10^{-10}$ (right). Analysis shows that the symmetric DM can be efficiently annihilated.⁵

Basics Z' Constraints Symmetric Component Relic Density MSSM Extension

AsyDM in MSSM

We can extend this to a multicomponent DM model⁶ in the MSSM case. The superpotential for generating AsyDM becomes

$$\mathcal{W}_{\mathrm{asy}} = rac{1}{M_{\mathrm{asy}}^n} X^k \mathcal{O}_{\mathrm{asy}}$$

where examples of \mathcal{O}_{asy} include:

• LH_u, LLE^c, LQD^c, U^cD^cD^c

The Stueckelberg Lagrangian becomes

$$\mathcal{L}_{\mathrm{St}} = \int \mathrm{d} heta^2 \mathrm{d} ar{ heta}^2 \left[M \mathcal{C} + \mathcal{S} + ar{\mathcal{S}}
ight]^2$$

<u>*C* is the $U(1)_C$ vector multiplet</u> and S, \overline{S} are the chiral multiplets ⁶Feldman, Liu, Nath, and GP, Phys. Rev. D **81**, 095017 (2010) G. Peim (Northeastern University) AsyDM in Stueckelberg Ext.

Basics Z' Constraints Symmetric Component Relic Density MSSM Extension

Depletion of Neutralino

A display of the thermal relic density contributed by the neutralino. Parameter points are displayed by their light CP even Higgs mass and pass experimental constants. The yellow band shows 10% of the WMAP value. Thus we have a two component dark matter picture with the conventional neutralino component being subdominant.⁷

 7 See Feng, Nath, and GP, arXiv:1204.5752 for more details
 < □ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < ⊕ > < @ > < @ > < @

Detection of Subdominant Neutralino Dark Matter

An exhibition of the neutralino-proton spin-independent cross section as a function of the neutralino mass for mSUGRA (left) and non-universal gauginos (right). To account for the reduced relic density of the neutralino component of dark matter the spin-independent cross section has been corrected by a factor $\mathcal{R} = \Omega_{\tilde{\chi}_1^0} h_0^2 / (\Omega_{\rm DM} h_0^2)$.⁸

⁸See Feng, Nath, and GP, arXiv:1204.5752 for more details

Muon Collider Smoking Gun

Smoking gun signal for Z' in the $\tau^-\tau^+$ channel compared to e^-e^+ channel at a muon collider. Such a smoking gun signal could be an indication of $L_{\mu} - L_{\tau}$ gauge symmetry.

Conclusion

- One issue for AsyDM models is depleting the symmetric component of DM
- Using a Stueckelberg U(1) extension we are able to explain the cosmic coincidence and deplete the symmetric component of DM
- This Stueckelberg model has interesting signals at a muon collider
 - In the MSSM case, the neutralino component can still be seen at direct detection DM experiments

< 口 > < 同 >

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ξ = 𝒴 𝔄 𝔄 𝔅

Additional Slides

Additional Slides

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ● ●

 $|\psi\bar{\psi}
ightarrow f\bar{f}|$

$$\begin{split} \sigma_{\psi\bar{\psi}\to f\bar{f}} &= a_{\psi} \left| \left(s - M_{Z'}^{2} + i\Gamma_{Z'}M_{Z'} \right) \right|^{-2} \\ a_{\psi} &= \frac{\beta_{f} \left(\frac{1}{2}g_{C}^{2}Q_{C}^{\psi}Q_{C}^{f} \right)^{2}}{64\pi s\beta_{\psi}} \left[s^{2} \left(1 + \frac{1}{3}\beta_{f}^{2}\beta_{\psi}^{2} \right) + 4M_{\psi}^{2} \left(s - 2m_{f}^{2} \right) + 4m_{f}^{2} \left(s + 2M_{\psi}^{2} \right) \right] \right] \\ \Gamma_{Z'\to f\bar{f}} &= \left(\frac{1}{2}g_{C}Q_{C}^{f} \right)^{2} r_{f} \frac{M_{Z'}}{12\pi}, \quad f = \mu, \nu_{\mu}, \tau, \nu_{\tau} \\ \Gamma_{Z'\to\psi\bar{\psi}} &= \left(\frac{1}{2}g_{C}Q_{C}^{\psi} \right)^{2} \frac{M_{Z'}}{12\pi} \left(1 + \frac{2M_{\psi}^{2}}{M_{Z'}^{2}} \right) \left(1 - \frac{4M_{\psi}^{2}}{M_{Z'}^{2}} \right)^{1/2} \Theta \left(M_{Z'} - 2M_{\psi} \right) \end{split}$$

•
$$\beta_{f,\psi} = (1 - 4m_{f,\psi}^2/s)^{1/2}$$

• $r_f = 1$ for $f = \mu, \tau$
• $r_f = 1/2$ for $f = \nu_\mu, \nu_\tau$

□ > < @ > < E > < E > E = 9900

Freeze-out Temperature

Define x_f such that for $x = x_f = T_f/m_{\psi}$ we have

$$\frac{\mathrm{d}f_{\bar{\psi}}^{\mathrm{eq}}}{\mathrm{d}x} = \alpha \langle \sigma \mathbf{v} \rangle f_{\psi}^{\mathrm{eq}} f_{\bar{\psi}}^{\mathrm{eq}}$$

where

•
$$f_{\bar{\psi}}^{\text{eq}}(x) = a_{\bar{\psi}} x^{-3/2} e^{-1/x}$$

• $a_{\bar{\psi}} = g_{\bar{\psi}} (2\pi)^{-3/2} h^{-1}(T) \approx 9.3 \times 10^{-4} g_{\bar{\psi}}$ around
 $T = 0.5 \text{ GeV}$

• $g_{\bar{\psi}}$ denotes the degrees of freedom of the dark particle Plugging this in and solving to first order we get

$$x_f \simeq x_f^0 \left[1 - a_{\bar{\psi}}^{-1} \gamma(x_f^0)^{5/2} e^{1/x_f^0}
ight]$$