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Goals of Higgs Physics

Higgs Search = search for dynamics of SU(2) × U(1) breaking

•• Discover the Higgs boson

•• Measure its couplings and probe

mass generation for gauge bosons and fermions

Fermion masses arise from Yukawa couplings via Φ†→(0, v+H√
2

)
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•• Test SM prediction: f̄ f H Higgs coupling strength = m f /v

•• Observation of H f f̄ Yukawa coupling is no proof that v.e.v exists
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Higgs coupling to gauge bosons

Kinetic energy term of Higgs doublet field:
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•• W, Z mass generation: m2
W =

( gv
2

)2
, m2

Z =
(g2+g′2)v2

4

•• WWH and ZZH couplings are generated

•• Higgs couples proportional to mass: coupling strength = 2 m2
V/v ∼ g2v within SM

Measurement of WWH and ZZH couplings is essential for identification of H as agent of

symmetry breaking: Without a v.e.v. such a trilinear coupling is impossible at tree level
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Feynman rules for SM Higgs couplings
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Verify tensor structure of HVV couplings. Loop induced couplings lead to HVµνVµν effective

coupling and different tensor structure: gµν → q1 · q2 gµν − q1νq2µ



Deviations from SM Higgs coupling strengths
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Goal: determine deviations ∆X in HXX couplings from LHC and Tevatron data



Total cross sections at the LHC
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Decay of the SM Higgs

Higgs decay width and branching fractions within the SM
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Main search channels

•• inclusive searches for

H →γγ

invariant-mass peak, for mH < 150 GeV

H → ZZ∗ → ℓ+ℓ−ℓ+ℓ−

for mH ≥ 120 GeV and mH 6= 2mW .

H →W+W− → ℓ+ν̄ℓ−ν

for 120 GeV ≤ mH

•• VBF searches for
H →γγ

H → ττ

for 115 GeV ≤ mH ≤ 150 GeV

•• Search for boosted Higgs in VH associated production

H → bb̄

for 115 GeV ≤ mH ≤ 140 GeV



Main search channels (old version)

•• inclusive searches for

H →γγ

invariant-mass peak, for mH < 150 GeV

H → ZZ∗ → ℓ+ℓ−ℓ+ℓ−

for mH ≥ 130 GeV and mH 6= 2mW .

H →W+W− → ℓ+ν̄ℓ−ν

for 140 GeV ≤ mH < 200 GeV

•• VBF searches for
H →γγ

H → ττ

for 115 GeV ≤ mH ≤ 150 GeV

•• Search for boosted Higgs in VH associated production

H → bb̄

for 115 GeV ≤ mH ≤ 140 GeV



H →γγ

H

g

g

γ

γ

W/tt

•• BR(H →γγ) ≈ 10−3

•• large backgrounds from qq̄→γγ, gg→γγ and

jets misidentified as photons

•• but CMS and ATLAS have excellent photon-

energy resolution (order of 1%)

Rate is proportional to |agHtt + bgHbb|2 times |cgHWW − dgHtt|2
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H →γγ

•• Look for a narrow γγ invariant

mass peak

•• Extrapolate background into the

signal region from sidebands

•• Indication for signal at mγγ =

125 GeV
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Landau-Yang theorem: γγ resonance cannot be spin1

=⇒ New resonance at 125 GeV is most likely spin 0 (or perhaps spin 2)
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H →γγ in VBF

CMS data for VBF (2 jet) selection CMS H→γγ signal strengths

VBF rate is proportional to g2
HVV times |cgHWW − dgHtt|2
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H → ZZ → ℓ+ℓ−ℓ+ℓ−

The gold-plated mode

H

g

g
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Z

•• Most important and clean search mode for

mH < 600 GeV (with hole around 2mW)

•• Continuum, limited, irreducible background

from qq̄→ ZZ

•• small BR(H → ℓ+ℓ−ℓ+ℓ−) ≈ 0.15%

(even smaller when mH < 2mZ)

Rate is proportional to |agHtt + bgHbb|2 times g2
HZZ



H → ZZ → ℓ+ℓ−ℓ+ℓ−

•• invariant mass of the charged lep-

tons fully reconstructed

CMS and ATLAS see indication for excess events around mZZ = 125 GeV
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H → WW → ℓ+
ν̄ℓ−

ν

H

g

g

ν

l-

l+

ν

W-

W+

•• Exploit ℓ+ℓ− angular correlations

•• measure the transverse mass with a Jaco-

bian peak at mH

mT =
√

(Eℓℓ
T + Emiss

T )2 − (pℓℓ
T + pmiss

T )2

•• signal produces broad peak =⇒ must

know the background normalization pre-

cisely
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H → WW → ℓ+
ν̄ℓ−

ν

Observation of inclusive H→WW signal at 125 GeV is challenging, as demonstrated by

2011 ATLAS results

125 GeV Signal WW WZ/ZZ/Wγ tt̄ W + jets Total Bkg. Observed

0-jet 25 ± 7 110 ± 12 12 ± 3 7 ± 2 27 ± 16 173 ± 22 174

1-jet 6 ± 2 18 ± 3 6 ± 3 7 ± 2 5 ± 3 45 ± 7 56

2-jet 0.4 ± 0.2 0.3 ± 0.2 0.2 ± 0.1 0.5±0.2 0

•• no signal in 0-jet sample, some enhancement in 1-jet sample

•• Observation is limited by systematic errors:

QCD extrapolation from control region for qq̄→WW background

determination of jets faking leptons (W+ jets background)

•• mH = 125 GeV was originally considered below sensitivity region of inclusive search

•• VBF search for H→WW has better signal to background ratio but needs much more statistics

Dieter Zeppenfeld 7.5.2012 Higgs 15



Summary of measured channels

CMS data

SMσ/σBest fit 
-1 -0.5 0 0.5 1 1.5 2 2.5 3

 4l→ ZZ →H 

 WW→H 

γγ →H 

ττ →H 

 bb→H 

-1L = 4.6-4.8 fb
 = 7 TeVsCMS,   = 124 GeVH   m

Combined  (68%)

Single channel

ATLAS, CMS, Tevatron Giardino et al.arXiv:1203.4254

ττ rate in VBF is proportional to g2
HVV times g2

Hττ

bb̄ rate in VH associated production is proportional to g2
HVV times g2

Hbb
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Measuring Higgs couplings at LHC

LHC rates for partonic process pp→H→xx given by σ(pp→H) · BR(H→xx)

σ(H) × BR(H→xx) =
σ(H)SM

Γ SM
p

· ΓpΓx

Γ
,

Measure products ΓpΓx/Γ for combination of processes (Γp = Γ(H→pp))

Problem: rescaling fit results by common factor f

Γi→ f · Γi , Γ→ f 2Γ = ∑
obs

f Γi + Γrest

leaves observable rate invariant =⇒ no model independent results at LHC

Loose bounds on scaling factor:

f 2Γ > ∑
obs.

f Γx =⇒ f > ∑
obs.

Γx

Γ
= ∑

obs.

BR(H→xx)(= O(1))

Total width below experimental resolution of Higgs mass peak (∆m = 1 . . . 2 GeV)

f 2Γ < ∆m =⇒ f <

√

∆m

Γ
< O(20)



Fit LHC data within constrained models

Make assumptions on relations between

Higgs couplings, on deviations from SM

rates

Assumptions in 2000 analysis Kinnunen,

Nikitenko, Richter-Was, DZ hep-ph/0002036

•• gHττ

gHbb
= SM value

•• gHWW
gHZZ

= SM value

•• no exotic channels

Expected errors at LHC14 with 200 fb−1 of

data

Many new analyses of 2011 LHC data:

arXiv:1202.3144, arXiv:1202.3415, arXiv:1202.3697, arXiv:1203.3456, arXiv:1203.4254,

arXiv:1203.5083, arXiv:1203.6826, arXiv:1204.0464, arXiv:1204.4817

Below: SFitter analysis of Lafaye, Plehn, Rauch, Zerwas



SFitter analysis of Higgs couplings at LHC

• Parametrize deviations from SM couplings

gi = gSM
i (1 + ∆i)

• Five free parameters i = W, Z, t, b, τ

plus generation universality

• Loop-induced couplings change from

modifying contributing tree-level couplings

• ∆H : common parameter modifying

all (tree-level) couplings

• Assume no add. contribution to total width

• Background expectations, exp. errors, etc.

from published analyses

• cross-checked with exclusion and

signal-strength plots

List of input channels

ATLAS CMS

γγ γγ

ZZ → 4ℓ γγ di-jet

WW 0-jet ZZ → 4ℓ

WW 1-jet WW 0-jet

WW 2-jet WW 1-jet

ττ 0-jet WW 2-jet

ττ 1-jet ττ 0/1-jet

ττ VBF ττ Boosted

ττ VH ττ VBF

bb̄ WH bb̄ WH

bb̄ Z(→ ℓℓ̄)H bb̄ Z(→ ℓℓ̄)H

bb̄ Z(→ νν̄)H bb̄ Z(→ νν̄)H



Profile log-likelihood Map

SM expectation
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• Secondary solution in SM case:

(∆χ2 = 0.86)

• Large top Yukawa-coupling

→ sign of Higgs-photon coupling flipped

• no excess in H → WW channels

→ ∆W → -1 preferred

• Higgs-photon coupling induced by top

→ ∆t larger

• → looks similar to secondary solution



Central values and errors on couplings
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• single-parameter modifier ∆H

already constrained to 14 %

• significant deviations from

expectations (size of errors)

• values consistent with

secondary solution in SM

• SM matches well nevertheless:

χ2 = 13.2 / 22 d.o.f.

cf. best-fit point:

χ2 = 9.3 / 22 d.o.f.

For more details see talk by Tilman Plehn



Summary of measured channels

CMS data

SMσ/σBest fit 
-1 -0.5 0 0.5 1 1.5 2 2.5 3

 4l→ ZZ →H 

 WW→H 

γγ →H 

ττ →H 

 bb→H 

-1L = 4.6-4.8 fb
 = 7 TeVsCMS,   = 124 GeVH   m

Combined  (68%)

Single channel

ATLAS, CMS, Tevatron Giardino et al.arXiv:1203.4254

Surprising observation: WW rate is low for all measurements

Even inclusive WW deficit is not really significant at this point, however.

Sign of new physics????



Data driven qq̄→WW background determination

ATLAS control region (+ ∆φll < 1.8):

mll > 80/106 GeV
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Measure WW background in high mll region

Extrapolate to signal region (mll < 50 GeV) with predicted MC shape

Shape uncertainty of extrapolation ≈ 10% (from QCD scale uncertainty alone)



New physics backgrounds?

Extra contributions in control region can lead to overestimate of background in signal region

Example:
Intermediate mass charginos
and sleptons,
heavy squarks and gluinos
Feigl, Rzehak, DZ in prep.
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Tensor structure of the HVV coupling

Most general HVV vertex Tµν(q1, q2)

(a) (b)

g

Q
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Q Q
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Q
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V
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q2

µ

ν ν

µ

Tµν = a1 gµν +

a2

(

q1 · q2 gµν − qν
1 qµ

2

)

+

a3 εµνρσ q1ρq2σ

The ai = ai(q1, q2) are scalar form factors

Physical interpretation of terms:

SM Higgs LI ∼ HVµVµ −→ a1

loop induced couplings for neutral scalar

CP even Le f f ∼ HVµνVµν −→ a2

CP odd Le f f ∼ HVµνṼµν −→ a3

Must distinguish a1, a2, a3 experimentally
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Azimuthal angle correlations

Tell-tale signal for non-SM coupling is azimuthal angle between tagging jets

Dip structure at 90◦ (CP even) or 0/180◦ (CP odd) only depends on tensor structure of HVV

vertex. Very little dependence on form factor, LO vs. NLO, Higgs mass etc.



Azimuthal angle distribution and Higgs CP properties

Kinematics of H j j event:

Define azimuthal angle between jet momenta j+ and j− via

εµνρσ bµ
+ jν+bρ

− jσ− = 2pT,+pT,− sin(φ+ −φ−) = 2 pT,+pT,− sin ∆φ j j

•• ∆φ j j is a parity odd observable

•• ∆φ j j is invariant under interchange of beam directions (b+, j+) ↔ (b−, j−)
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Signals for CP violation in the Higgs Sector
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Conclusions

•• LHC has first hints for a Higgs boson at a mass around 125 GeV

•• Given a resonance in γγ channel, new particle is most likely spin 0

•• Measurement of Higgs couplings will be most important task after

discovery can be claimed

•• Present statistics is too low for significant statements on Higgs cou-

plings. Huge improvements expected in the future

•• VBF production and H→ZZ→llll will be important to measure the

tensor structure of the HVV vertex
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Secondary Solution – Backup

SM expectation
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green line: split of primary and secondary SM solution

• large top-Yukawa coupling requires large bottom-Yukawa coupling

→ Enhancement in gluon-fusion counter-balanced by reduced branching ratio

• ∆b ∼ 30 → ΓH ∼ 2 GeV → still fine


