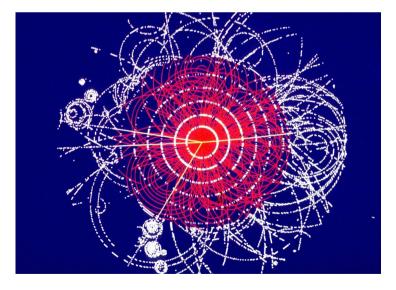
HIGGS PHYSICS AT THE LHC



Dieter Zeppenfeld Karlsruhe Institute of Technology

Phenomenology 2012 Symposium University of Pittsburgh, May 7 - 9, 2012

- Higgs Theory
- Search channels at the LHC
- Measurement of Higgs couplings
- New physics backgrounds?
- Tensor structure of *HVV* couplings
- Conclusions

Higgs Search = search for dynamics of $SU(2) \times U(1)$ breaking

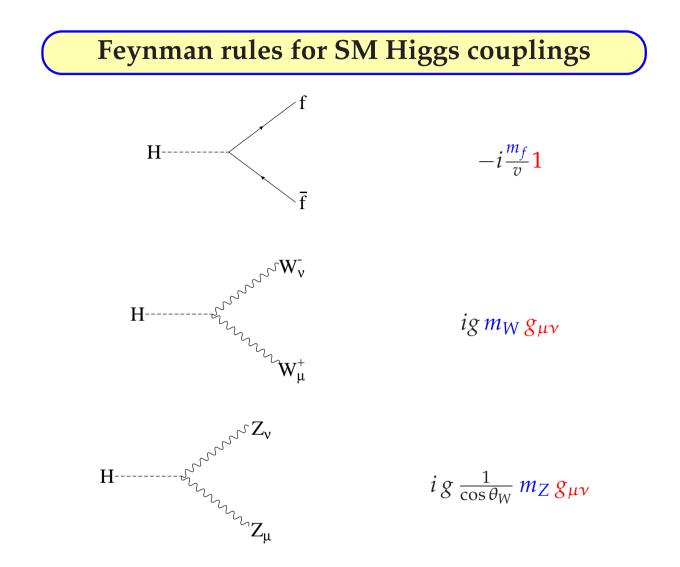
- Discover the Higgs boson
- Measure its couplings and probe mass generation for gauge bosons and fermions

Fermion masses arise from Yukawa couplings via

$$\Phi^{\dagger} \rightarrow (0, \frac{v+H}{\sqrt{2}})$$

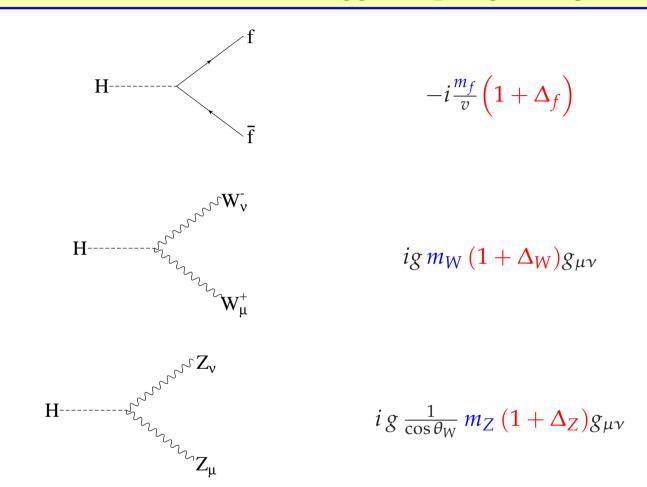
$$\mathcal{L}_{\text{Yukawa}} = -\Gamma_d^{ij} \bar{Q}_L^{\prime i} \Phi d_R^{\prime j} - \Gamma_d^{ij*} \bar{d}_R^{\prime i} \Phi^{\dagger} Q_L^{\prime j} + \dots = -\Gamma_d^{ij} \frac{v+H}{\sqrt{2}} \bar{d}_L^{\prime i} d_R^{\prime j} + \dots$$
$$= -\sum_f m_f \bar{f} f \left(1 + \frac{H}{v} \right)$$

- Test SM prediction: $\bar{f}fH$ Higgs coupling strength = m_f/v
- Observation of $Hf\bar{f}$ Yukawa coupling is no proof that v.e.v exists

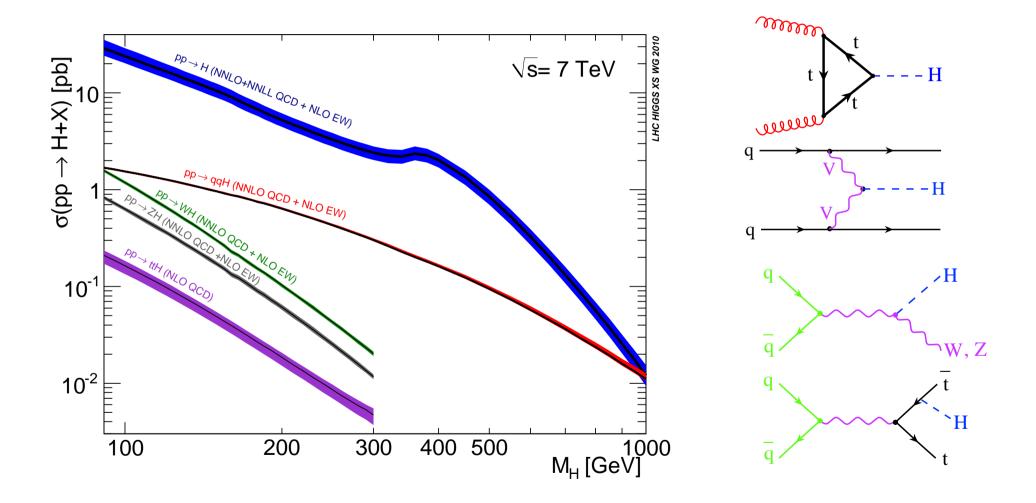

Higgs coupling to gauge bosons

Kinetic energy term of Higgs doublet field:

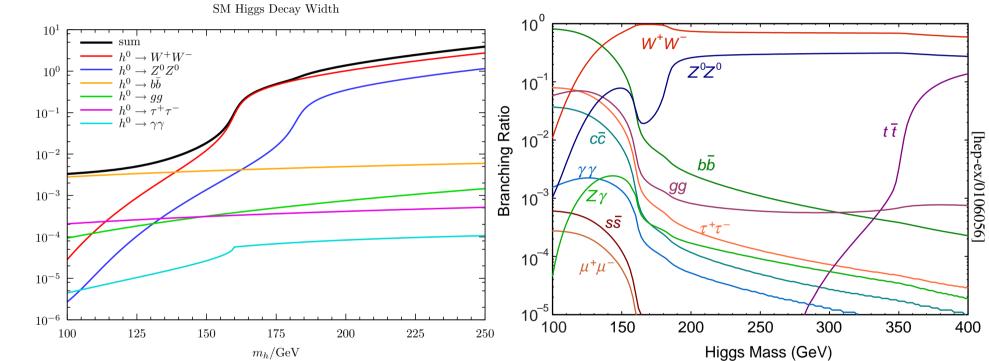
$$(D^{\mu}\Phi)^{\dagger}(D_{\mu}\Phi) = \frac{1}{2}\partial^{\mu}H\partial_{\mu}H + \left[\left(\frac{gv}{2}\right)^{2}W^{\mu+}W^{-}_{\mu} + \frac{1}{2}\frac{\left(g^{2}+g'^{2}\right)v^{2}}{4}Z^{\mu}Z_{\mu}\right]\left(1+\frac{H}{v}\right)^{2}$$


- *W*, *Z* mass generation: $m_W^2 = \left(\frac{gv}{2}\right)^2$, $m_Z^2 = \frac{(g^2 + g'^2)v^2}{4}$
- *WWH* and *ZZH* couplings are generated
- Higgs couples proportional to mass: coupling strength = $2 m_V^2 / v \sim g^2 v$ within SM

Measurement of *WWH* and *ZZH* couplings is essential for identification of *H* as agent of symmetry breaking: Without a v.e.v. such a trilinear coupling is impossible at tree level


Verify tensor structure of *HVV* couplings. Loop induced couplings lead to $HV_{\mu\nu}V^{\mu\nu}$ effective coupling and different tensor structure: $g_{\mu\nu} \rightarrow q_1 \cdot q_2 g_{\mu\nu} - q_{1\nu}q_{2\mu}$

Deviations from SM Higgs coupling strengths



Goal: determine deviations Δ_X in *HXX* couplings from LHC and Tevatron data

Total cross sections at the LHC

Higgs decay width and branching fractions within the SM

• inclusive searches for

 $H \rightarrow \gamma \gamma$

invariant-mass peak, for $m_H < 150 \text{ GeV}$

 $H \rightarrow ZZ^* \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

for $m_H \ge 120$ GeV and $m_H \ne 2m_W$.

 $H \rightarrow W^+ W^- \rightarrow \ell^+ \bar{\nu} \ell^- \nu$

for 120 GeV $\leq m_H$

• VBF searches for

 $H \rightarrow \gamma \gamma$ $H \rightarrow \tau \tau$

for 115 GeV $\leq m_H \leq 150$ GeV

• Search for boosted Higgs in *VH* associated production

 $H \rightarrow b\bar{b}$

for 115 GeV $\leq m_H \leq$ 140 GeV

Main search channels (old version)

• inclusive searches for

 $H \rightarrow \gamma \gamma$

invariant-mass peak, for $m_H < 150 \text{ GeV}$

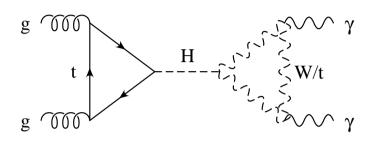
 $H \rightarrow ZZ^* \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

for $m_H \ge 130$ GeV and $m_H \ne 2m_W$.

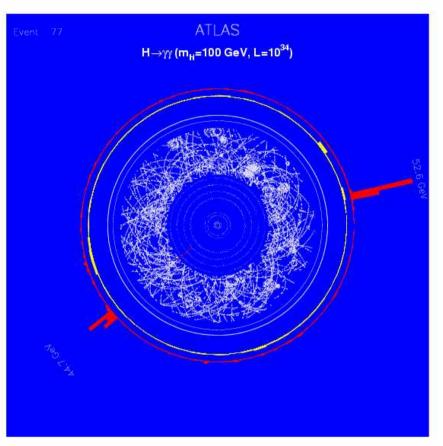
 $H \rightarrow W^+ W^- \rightarrow \ell^+ \bar{\nu} \ell^- \nu$

- for 140 GeV $\leq m_H < 200$ GeV
- VBF searches for

 $H \to \gamma \gamma$ $H \to \tau \tau$

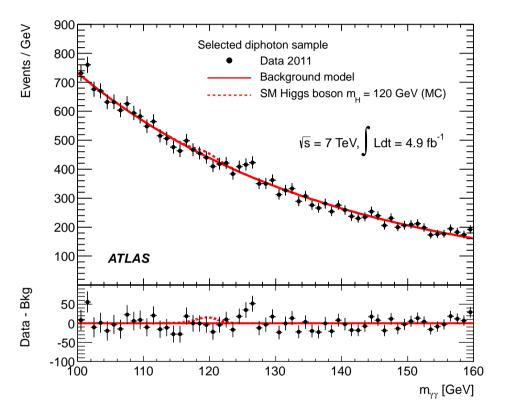

for 115 GeV $\leq m_H \leq 150$ GeV

• Search for boosted Higgs in *VH* associated production


 $H \rightarrow b\bar{b}$

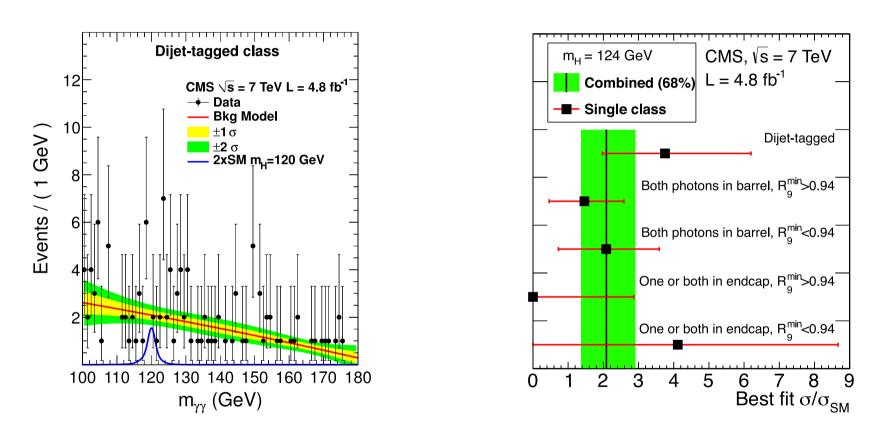
for 115 GeV $\leq m_H \leq$ 140 GeV

$H \rightarrow \gamma \gamma$


- BR $(H \rightarrow \gamma \gamma) \approx 10^{-3}$
- large backgrounds from $q\bar{q} \rightarrow \gamma\gamma$, $gg \rightarrow \gamma\gamma$ and jets misidentified as photons
- but CMS and ATLAS have excellent photonenergy resolution (order of 1%)

Rate is proportional to
$$|ag_{Htt} + bg_{Hbb}|^2$$
 times $|cg_{HWW} - dg_{Htt}|^2$

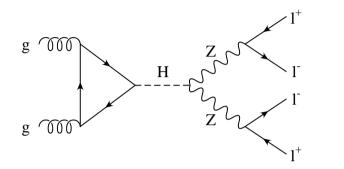
$H \rightarrow \gamma \gamma$


- Look for a narrow $\gamma\gamma$ invariant mass peak
- Extrapolate background into the signal region from sidebands
- Indication for signal at $m_{\gamma\gamma} = 125 \text{ GeV}$

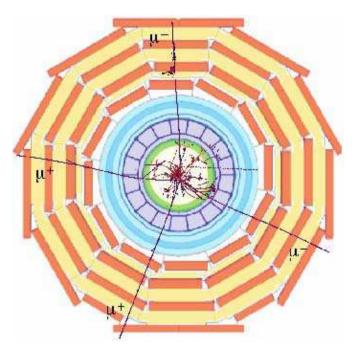
Landau-Yang theorem: $\gamma\gamma$ resonance cannot be spin1 \implies New resonance at 125 GeV is most likely spin 0 (or perhaps spin 2) $H \rightarrow \gamma \gamma$ in VBF

CMS data for VBF (2 jet) selection

CMS $H \rightarrow \gamma \gamma$ signal strengths

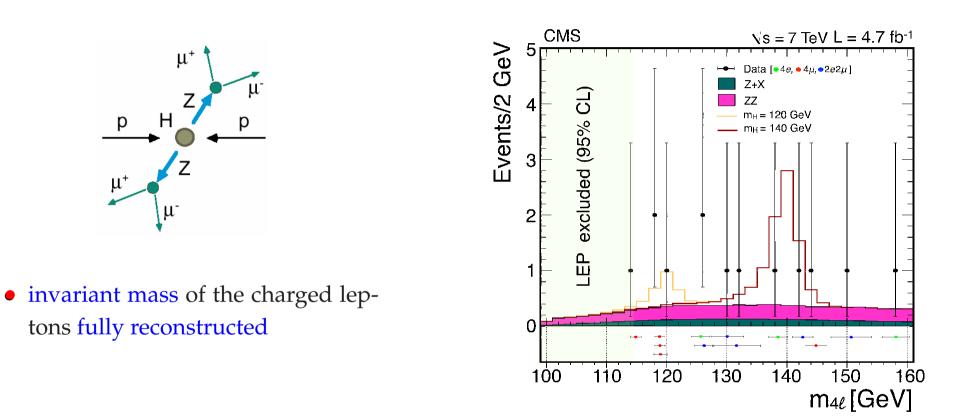


VBF rate is proportional to g_{HVV}^2 times $|cg_{HWW} - dg_{Htt}|^2$

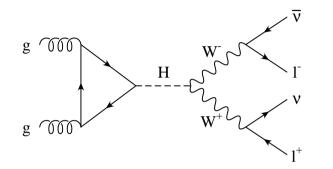

Dieter Zeppenfeld 7.5.2012 Higgs 11

$H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

The gold-plated mode

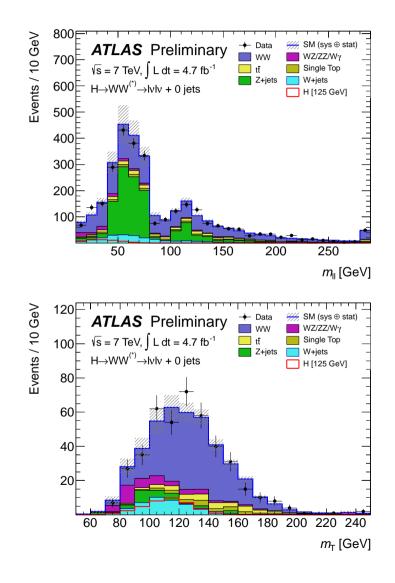


- Most important and clean search mode for m_H < 600 GeV (with hole around 2m_W)
- Continuum, limited, irreducible background from $q\bar{q} \rightarrow ZZ$
- small BR $(H \rightarrow \ell^+ \ell^- \ell^+ \ell^-) \approx 0.15\%$ (even smaller when $m_H < 2m_Z$)


Rate is proportional to $|ag_{Htt} + bg_{Hbb}|^2$ times g_{HZZ}^2

 $H \rightarrow ZZ \rightarrow \ell^+ \ell^- \ell^+ \ell^-$

CMS and ATLAS see indication for excess events around $m_{ZZ} = 125 \text{ GeV}$


 $H \rightarrow WW \rightarrow \ell^+ \bar{\nu} \ell^- \nu$

- Exploit $\ell^+\ell^-$ angular correlations
- measure the transverse mass with a Jacobian peak at *m_H*

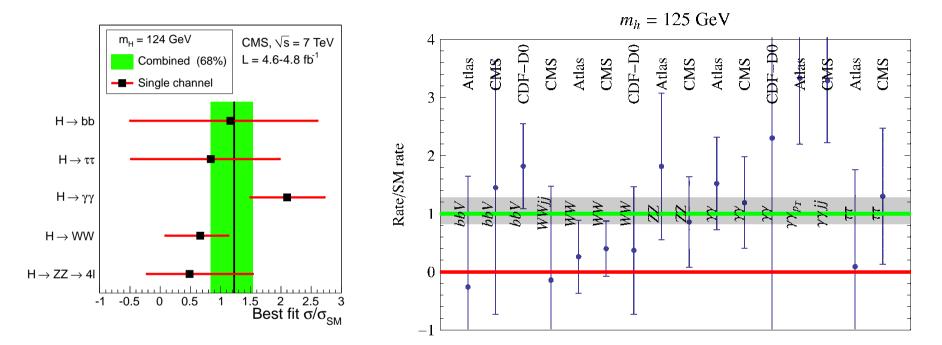
$$m_T = \sqrt{(E_T^{\ell\ell} + E_T^{miss})^2 - (\mathbf{p}_T^{\ell\ell} + \mathbf{p}_T^{miss})^2}$$

 signal produces broad peak ⇒ must know the background normalization precisely

$H \rightarrow WW \rightarrow \ell^+ \bar{\nu} \ell^- \nu$

Observation of inclusive $H \rightarrow WW$ signal at 125 GeV is challenging, as demonstrated by 2011 ATLAS results

125 GeV	Signal	WW	$WZ/ZZ/W\gamma$	tī	W + jets	Total Bkg.	Observed
0-jet	25 ± 7	110 ± 12	12 ± 3	7 ± 2	27 ± 16	173 ± 22	174
1-jet	6 ± 2	18 ± 3	6 ± 3	7 ± 2	5 ± 3	45 ± 7	56
2-jet	0.4 ± 0.2	0.3 ± 0.2		0.2 ± 0.1		$0.5 {\pm} 0.2$	0


• no signal in 0-jet sample, some enhancement in 1-jet sample

- Observation is limited by systematic errors:
 QCD extrapolation from control region for qq̄→WW background determination of jets faking leptons (W+ jets background)
- $m_H = 125$ GeV was originally considered below sensitivity region of inclusive search
- VBF search for $H \rightarrow WW$ has better signal to background ratio but needs much more statistics

Summary of measured channels

CMS data

ATLAS, CMS, Tevatron Giardino et al.arXiv:1203.4254

 $\tau\tau$ rate in VBF is proportional to g^2_{HVV} times $g^2_{H\tau\tau}$ $b\bar{b}$ rate in VH associated production is proportional to g^2_{HVV} times g^2_{Hbb}

Measuring Higgs couplings at LHC

LHC rates for partonic process $pp \rightarrow H \rightarrow xx$ given by $\sigma(pp \rightarrow H) \cdot BR(H \rightarrow xx)$

$$\sigma(H) \times BR(H \rightarrow xx) = \frac{\sigma(H)^{SM}}{\Gamma_p^{SM}} \cdot \frac{\Gamma_p \Gamma_x}{\Gamma},$$

Measure products $\Gamma_p \Gamma_x / \Gamma$ for combination of processes ($\Gamma_p = \Gamma(H \rightarrow pp)$) Problem: rescaling fit results by common factor *f*

$$\Gamma_i \rightarrow f \cdot \Gamma_i$$
, $\Gamma \rightarrow f^2 \Gamma = \sum_{obs} f \Gamma_i + \Gamma_{rest}$

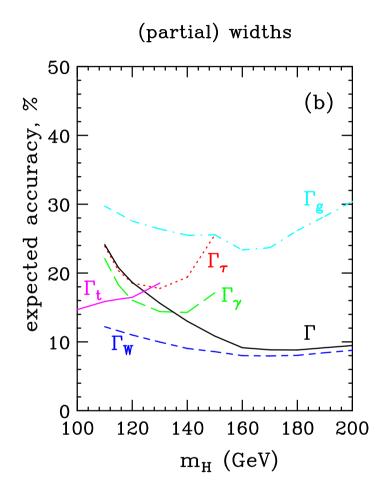
leaves observable rate invariant \implies no model independent results at LHC Loose bounds on scaling factor:

$$f^{2}\Gamma > \sum_{obs.} f\Gamma_{x} \implies f > \sum_{obs.} \frac{\Gamma_{x}}{\Gamma} = \sum_{obs.} BR(H \rightarrow xx) (= \mathcal{O}(1))$$

Total width below experimental resolution of Higgs mass peak ($\Delta m = 1...2$ GeV)

$$f^2 \Gamma < \Delta m \implies f < \sqrt{\frac{\Delta m}{\Gamma}} < \mathcal{O}(20)$$

Fit LHC data within constrained models


Make assumptions on relations between Higgs couplings, on deviations from SM rates

Assumptions in 2000 analysis Kinnunen,

Nikitenko, Richter-Was, DZ hep-ph/0002036

- $\frac{g_{H\tau\tau}}{g_{Hbb}} =$ SM value
- $\frac{g_{HWW}}{g_{HZZ}} = SM$ value
- no exotic channels

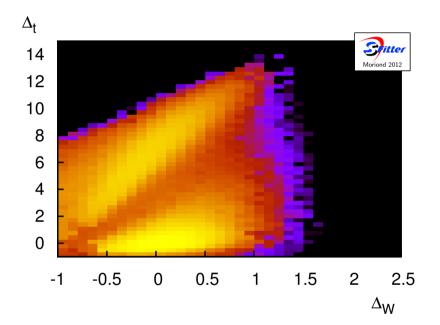
```
Expected errors at LHC14 with 200 fb<sup>-1</sup> of data
```


Many new analyses of 2011 LHC data:

arXiv:1202.3144, arXiv:1202.3415, arXiv:1202.3697, arXiv:1203.3456, arXiv:1203.4254, arXiv:1203.5083, arXiv:1203.6826, arXiv:1204.0464, arXiv:1204.4817 Below: SFitter analysis of Lafaye, Plehn, Rauch, Zerwas

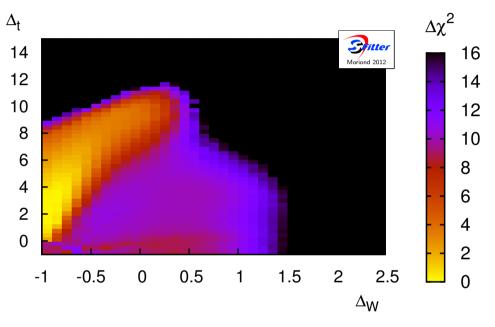
SFitter analysis of Higgs couplings at LHC

• Parametrize deviations from SM couplings


 $g_i = g_i^{\rm SM} \ (1 + \Delta_i)$

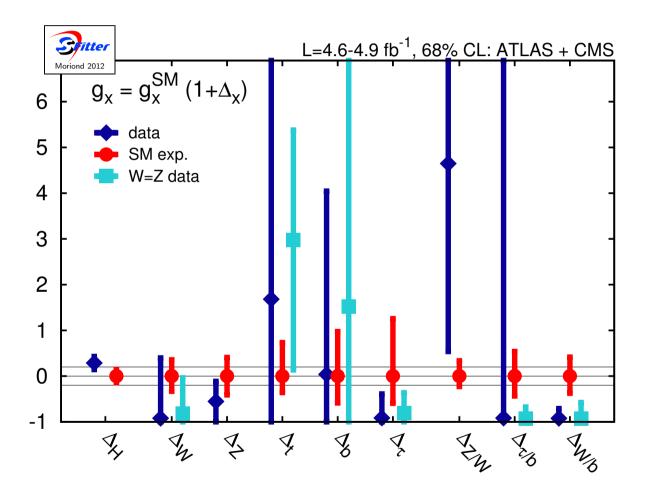
- Five free parameters $i = W, Z, t, b, \tau$ plus generation universality
- Loop-induced couplings change from modifying contributing tree-level couplings
- Δ_H : common parameter modifying all (tree-level) couplings
- Assume no add. contribution to total width
- Background expectations, exp. errors, etc. from published analyses
- cross-checked with exclusion and signal-strength plots

List of input channels								
ATLAS		CMS						
$\gamma\gamma$		γγ						
$ZZ \to 4\ell$		γγ	di-jet					
WW	0-jet	$ZZ \rightarrow 4\ell$						
WW	1-jet	WW	0-jet					
WW	2-jet	WW	1-jet					
au au	0-jet	WW	2-jet					
au au	1-jet	ττ	0/1-jet					
au au	VBF	ττ	Boosted					
au au	VH	ττ	VBF					
$b\bar{b}$	WH	$b\bar{b}$	WH					
bĪ	$Z(ightarrow \ell \bar{\ell})H$	bĪb	$Z(ightarrow \ell \bar{\ell})H$					
$b\bar{b}$	$Z(ightarrow u ar{ u})H$	$b\bar{b}$	$Z(\to \nu\bar{\nu})H$					


Profile log-likelihood Map

SM expectation

- Secondary solution in SM case: $(\Delta \chi^2 = 0.86)$
- Large top Yukawa-coupling
 - \rightarrow sign of Higgs-photon coupling flipped

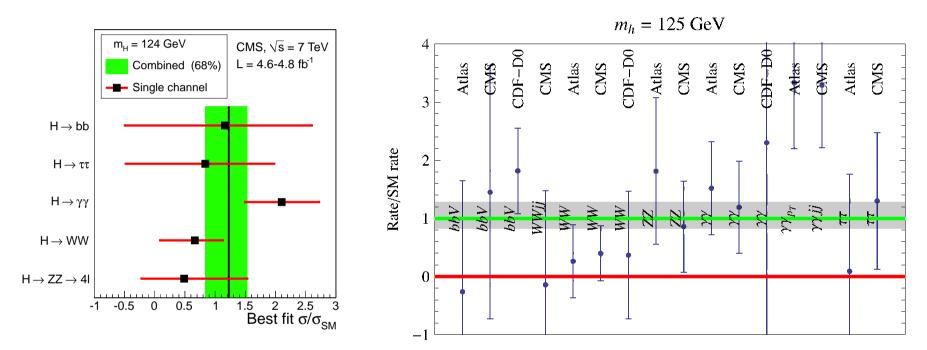


• no excess in $H \rightarrow WW$ channels

 $\rightarrow \Delta_W \rightarrow$ -1 preferred

- Higgs-photon coupling induced by top $\rightarrow \Delta_t$ larger
- ullet \rightarrow looks similar to secondary solution

Central values and errors on couplings

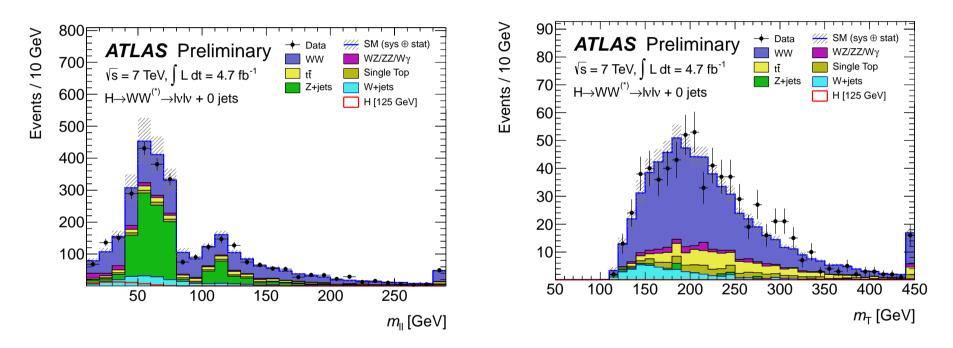

For more details see talk by Tilman Plehn

- single-parameter modifier Δ_H already constrained to 14 %
- significant deviations from expectations (size of errors)
- values consistent with secondary solution in SM
- SM matches well nevertheless: $\chi^2 = 13.2 / 22 \text{ d.o.f.}$ cf. best-fit point: $\chi^2 = 9.3 / 22 \text{ d.o.f.}$

Summary of measured channels

CMS data

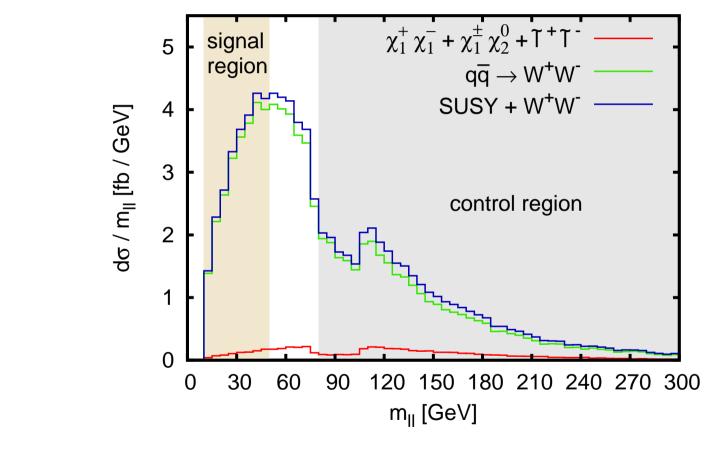
ATLAS, CMS, Tevatron Giardino et al.arXiv:1203.4254



Surprising observation: WW rate is low for all measurements Even inclusive WW deficit is not really significant at this point, however. Sign of new physics????

Data driven $q\bar{q} \rightarrow WW$ **background determination**

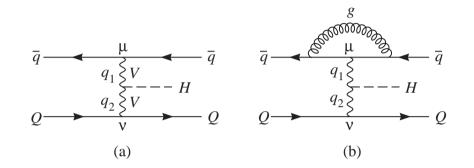
ATLAS control region (+ $\Delta \phi_{ll}$ < 1.8): $m_{ll} > 80/106 \text{ GeV}$


full control region (no $\Delta \phi_{ll} < 1.8$ cut)

Measure WW background in high m_{ll} region Extrapolate to signal region ($m_{ll} < 50$ GeV) with predicted MC shape Shape uncertainty of extrapolation $\approx 10\%$ (from QCD scale uncertainty alone)

New physics backgrounds?

Extra contributions in control region can lead to overestimate of background in signal region



invariant mass of lepton pair

Example: Intermediate mass charginos and sleptons, heavy squarks and gluinos Feigl, Rzehak, DZ in prep.

Tensor structure of the *HVV* **coupling**

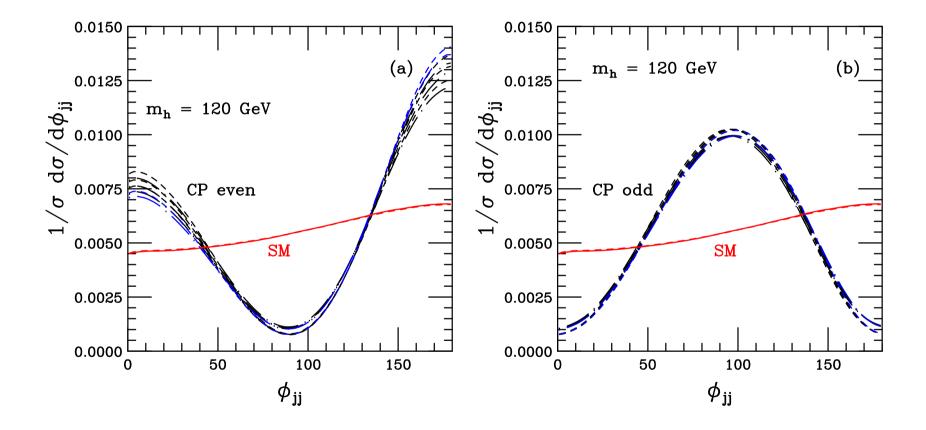
Most general *HVV* vertex $T^{\mu\nu}(q_1, q_2)$

$$T^{\mu\nu} = a_1 g^{\mu\nu} + a_2 (q_1 \cdot q_2 g^{\mu\nu} - q_1^{\nu} q_2^{\mu}) + a_3 \varepsilon^{\mu\nu\rho\sigma} q_{1\rho} q_{2\sigma}$$

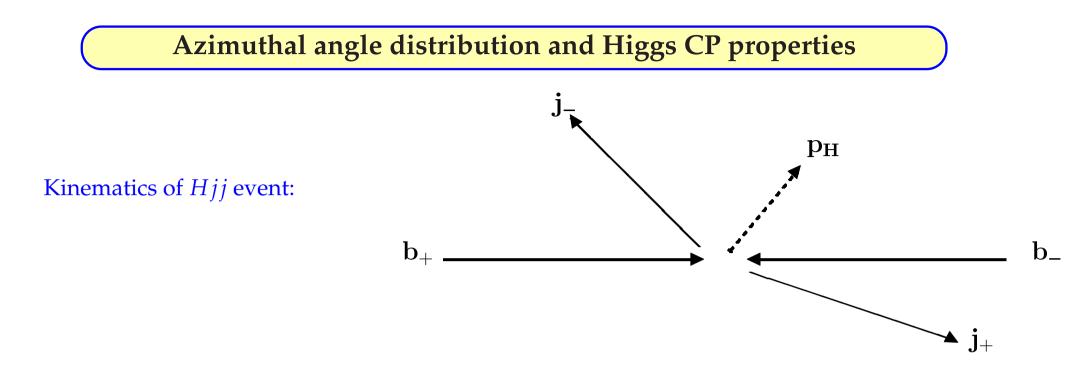
The $a_i = a_i(q_1, q_2)$ are scalar form factors

Physical interpretation of terms:

SM Higgs
$$\mathcal{L}_I \sim H V_\mu V^\mu \longrightarrow a_1$$


loop induced couplings for neutral scalar

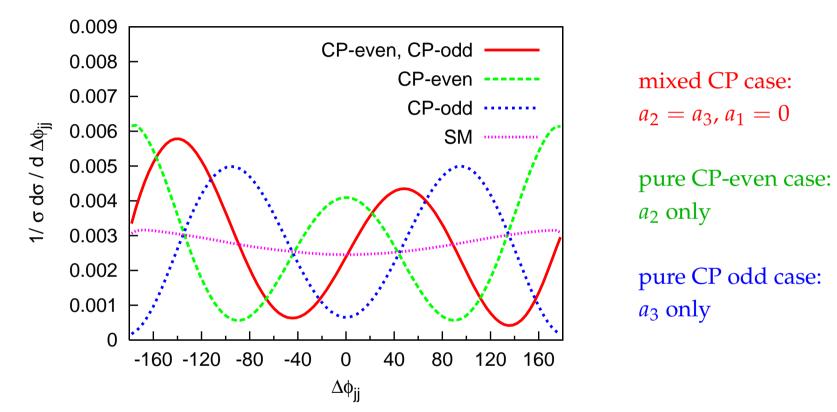
CP even $\mathcal{L}_{eff} \sim HV_{\mu\nu}V^{\mu\nu} \longrightarrow a_2$


CP odd $\mathcal{L}_{eff} \sim HV_{\mu\nu}\tilde{V}^{\mu\nu} \longrightarrow a_3$

Must distinguish a_1 , a_2 , a_3 experimentally

Tell-tale signal for non-SM coupling is azimuthal angle between tagging jets

Dip structure at 90° (CP even) or $0/180^{\circ}$ (CP odd) only depends on tensor structure of HVV vertex. Very little dependence on form factor, LO vs. NLO, Higgs mass etc.



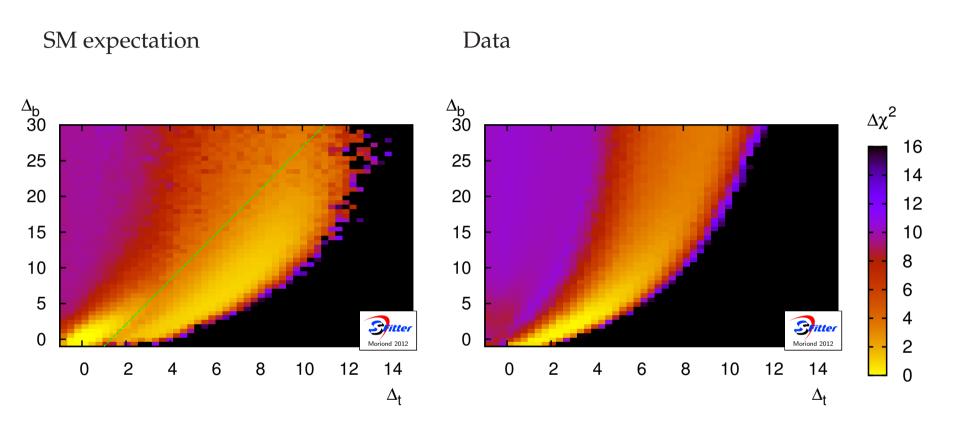
Define azimuthal angle between jet momenta j_+ and j_- via

$$\varepsilon_{\mu\nu\rho\sigma}b^{\mu}_{+}j^{\nu}_{+}b^{\rho}_{-}j^{\sigma}_{-} = 2p_{T,+}p_{T,-}\sin(\phi_{+}-\phi_{-}) = 2p_{T,+}p_{T,-}\sin\Delta\phi_{jj}$$

- $\Delta \phi_{jj}$ is a parity odd observable
- $\Delta \phi_{jj}$ is invariant under interchange of beam directions $(b_+, j_+) \leftrightarrow (b_-, j_-)$

Signals for CP violation in the Higgs Sector

Position of minimum of $\Delta \phi_{jj}$ distribution measures relative size of CP-even and CP-odd couplings. For


 $a_1 = 0,$ $a_2 = d \sin \alpha,$ $a_3 = d \cos \alpha,$

 \implies Minimum at $-\alpha$ and $\pi - \alpha$

Conclusions

- LHC has first hints for a Higgs boson at a mass around 125 GeV
- Given a resonance in $\gamma\gamma$ channel, new particle is most likely spin 0
- Measurement of Higgs couplings will be most important task after discovery can be claimed
- Present statistics is too low for significant statements on Higgs couplings. Huge improvements expected in the future
- VBF production and $H \rightarrow ZZ \rightarrow llll$ will be important to measure the tensor structure of the HVV vertex

Secondary Solution – Backup

green line: split of primary and secondary SM solution

- large top-Yukawa coupling requires large bottom-Yukawa coupling
 → Enhancement in gluon-fusion counter-balanced by reduced branching ratio
- $\Delta_b \sim 30 \rightarrow \Gamma_H \sim 2 \text{ GeV} \rightarrow \text{still fine}$