

PHYSICS WITH TAU LEPTONS AT ATLAS

Marcus M. Morgenstern on behalf of the ATLAS collaboration

Phenomenology 2012 Symposium Pittsburgh

Outline

- Introduction
 - Tau reconstruction
 - Tau identification
- Physics with Tau leptons
 - W→TU polarisation
 - Standard Model Higgs
 - Charged Higgs
 - SUSY

Characteristics of tau decays

3

- $m_{\tau} = 1.777 \text{ GeV}$
- cτ = 87 μm
- Leptonic decays hard to distinguish from primary electrons and muons
- Only hadronic decays considered for dedicated reconstruction algorithms
- Mainly one/three charged tracks
- Collimated decay
 - Reconstruction divided into two steps
 - Tau reconstruction
 - Building of tau candidates
 - Starting point: anti-k_t jets (R = 0.4) with $p_T > 10$ GeV and within $|\mathbf{\eta}| < 2.5$
 - Tau identification
 - Aim: selection of real tau decays and rejection of fake sources (jets, e, $\mu)$
 - Dedicated methods for separation against jets, electrons, muons

Run 155697, Event 6769403 Time 2010-05-24, 17:38 CEST

W→τv candidate in 7 TeV collisions

PT^{track} > | Ge

Identification of taus

- Using multivariate techniques
- Boosted Decision Trees, Log-Likelihood method
- Tracking and calorimeter information used
- Separately trained for single-/multi-prong tau decays
- Optimized for different working points corresponding to signal efficiencies of about 60%, 45%, 30%

isolation cone

Data-driven tau-ID efficiency measurement

(probe)

6

- Follows $Z \rightarrow \tau \tau \rightarrow$ Ih cross-section analysis
- Apply tag-and-probe method
- Dominant backgrounds: W+jets (taken from MC), multijets (estimated from data)
- Efficiency measured at three pre-defined working points
- Uncertainty: 8 12 % (improved to 4-5% for 2012 analysis)

ATLAS-CONF-2011-152

Tag-and-probe method using ET^{miss}

• Fit track distribution using three templates

₩→τυ

- Real taus (W→TU from MC)
- Multi-jets (data in control region)
- Electron fakes (from MC)
- Single fit to simultaneously measure efficiency of three predefined working points
- Uncertainty: 3 17 % (improved to 4-5%)

Sunday, May 6, 2012

PHYSICS INVOLVING TAU LEPTONS

$W \rightarrow \tau \upsilon$ polarisation measurement

- Performed on 2010 data corresponding to $L = 24 \text{ pb}^{-1}$
- First time measured at a hadron collider

Event selection

- I single track high p⊤ tau
- $E_T^{miss} > 30 \text{ GeV}$
- $|\Delta \phi(\text{jet}, E_T^{\text{miss}})| > 0.5 \text{ rad}$
- $S_{\mathrm{T}} = \frac{E_{\mathrm{T}}^{\mathrm{miss}}}{\sigma(E_{\mathrm{T}}^{\mathrm{miss}})} \geq 6$

Result $P_{\tau} = \frac{\sigma_R - \sigma_L}{\sigma_R + \sigma_L}$

- extracted by fitting $\boldsymbol{\Upsilon}$

 $P_{\tau} = -1.06 \pm 0.04 \; (stat) \stackrel{+0.05}{_{-0.07}} \; (syst)$

arXiv:1204.6720

Discriminating variable

9

STANDARD MODEL HIGGS

Event selection

- Based on full 2011 dataset corresponding to $L = 4.7 \text{ fb}^{-1}$
- All tau decay modes (II+4 υ , I τ _h+3 υ , τ _h τ _h+2 ν) considered
 - Defined in exclusive way
- Sub-channels divided into several categories (0-, I-, 2-jet VH, 2-jet VBF)
- Example $H \rightarrow \tau_h \tau_h + 2\nu + 1$ -jet category
- Exactly 2 isolated high-p_T (35, 25 GeV) tau leptons
- Collinear approximation
- Taus separated by $\Delta R(\mathbf{T},\mathbf{T}) < 2.2$
- Invariant mass of taus and jet, $m_{\tau\tau_j} > 225 \text{ GeV}$

Backgrounds

- Dominant backgrounds (multi-jet, $Z \rightarrow \tau \tau$) from data
- Further backgrounds (W+jets, tt, diboson) from MC

ATLAS-CONF-2012-014

Sunday, May 6, 2012

95% CLs exclusion limit

- Combination -

CHARGED HIGGS

arXiv:1204.2760

Sunday, May 6, 2012

Event selection

14

- Predicted by many non-minimal Higgs models (e.g. 2HDM)
- Observation would be a direct observation of new physics BSM
- Uses full 2011 data set corresponding to $L = 4.6 \text{ fb}^{-1}$
- Light H[±] analysis, i.e. analysed mass range from 90 GeV to 160 GeV
- Search performed in tt environment
- Example: $tt \rightarrow bbWH^+ \rightarrow bb(qq')(\tau v)$
- Tau + E_T^{miss} trigger (29, 35 GeV)
- \geq 4 jets with p_T > 20 GeV
 - 2 of them b-tagged
- $E_T^{miss} > 65 \text{ GeV}$
- MET significance, $\Sigma_{T} = \frac{E_{T}^{miss}}{0.5 \text{ GeV}^{1/2} \cdot \sqrt{\sum p_{T}}} > 13$
- Top quark decay topology

all backgrounds estimated from data

95% CL_s exclusion Limit on $BR(t \rightarrow bH^+)$

 $\tau + \mu$

Data 2011

 $Jet \rightarrow \tau misid$

True τ

∼ə 400

ଟ୍ଷ 350

- Use profile likelihood ratio
- Systematics treated as nuisance parameters
- tt normalisation corrected for BR (t→bH+)

No significant deviation from SM prediction observed

Set exclusion limit on BR(t→bH+)

95% CL_s exclusion Limit

SUSY SEARCHES INVOLVING TAU LEPTONS

Event selection

- Use sub-set of 2011 dataset corresponding to $L = 2.0 \text{ fb}^{-1}$
- Investigate GMSB scenario
- Search for events with large E_T^{miss} , jets and $\geq 2T$ leptons

Events / 40 GeV

- Jet + E_T^{miss} trigger $p_T > 75$ GeV, $E_T > 45$ GeV
- Reconstructed jet with $p_T > 130 \text{ GeV}$
- $E_T^{miss} > 130 \text{ GeV}$
- \geq 2 identified τ
- 2^{nd} jet with $p_T > 30 \text{ GeV} (\rightarrow \text{against multi-jets})$
- $\Delta \phi(p_T^{miss}, jet_{1,2}) > 0.4 \text{ rad} (\rightarrow against multi-jets)$
- m_{eff} > 700 GeV
- $m_T^{\tau_1} + m_T^{\tau_2} > 80 \text{ GeV}$

Backgrounds

• W+jets, tt simultaneously estimated in data

•Z+jets taken from MC

arXiv:1203.6580

95% CLs exclusion Limit

Conclusion

- Well performing tau identification @ ATLAS
- W→TU polarisation measurement first time performed at a hadron collider shows very good agreement with theory pred.
- Standard Model $H \rightarrow \tau \tau$ reach combined sensitivity to $\sim 3^* \sigma_{SM}$
- Charged Higgs exclude (95% CL) $\tan\beta$ of 12-26 and between 1 and 2-6 in $m_h{}^{max}$ scenario
- SUSY searches with taus excludes (95% CL) for $\Lambda{<}32~\text{GeV}$ independent on $\mbox{tan}\beta$

References

ATLAS-CONF-2011-152

Performance of the Reconstruction and Identification of Hadronic Tau Decays with ATLAS http://cdsweb.cern.ch/record/1398195

• ATLAS-STDM-2011-46-002

Measurement of Tau Polarization in W -> tau,nu Decays with the ATLAS Detector in pp Collisions at sqrt(s) = 7 TeV http://cdsweb.cern.ch/record/1428549

ATLAS-CONF-2012-014

Search for the Standard Model Higgs boson in the H->tau tau decay mode with 4.7 fb^-1 of ATLAS data at sqrt(s)=7TeV http://cdsweb.cern.ch/record/1429662

• <u>arXiv:1204.2760</u>

.

Search for charged Higgs bosons decaying via H+ -> taunu in top quark pair events using pp collision data at sqrt(s) = 7 TeV with the ATLAS detector

• arXiv:1203.6580

Search for Events with Large Missing Transverse Momentum, Jets, and at Least Two Tau Leptons in 7 TeV Proton-Proton Collision Data with the ATLAS Detector

References

arxiv:1204:3852

Search for supersymmetry with jets, missing transverse momentum and at least one hadronically decaying tau lepton in proton-proton collisions at \$\sqrt{7}\$ TeV with the ATLAS detector

• ATLAS-CONF-2012-006

Z -> tau tau cross section measurement in proton-proton collisions at 7 TeV with the ATLAS experiment http://cdsweb.cern.ch/record/1426991

• Phys.Lett. B706 (2012) 276-294

Measurement of the W->tau Cross Section in pp Collisions at sqrt(s) = 7 TeV with the ATLAS Experiment

• Phys.Lett. B705 (2011) 174-192

Search for neutral MSSM Higgs boson decaying to tau[^]+tau[^]- pairs in proton-proton collisions at $\sqrt{s} = 7$ TeV with the ATLAS experiment

BACKUP

ATLAS detector

EMBEDDINGTECHNIQUE

- select pure $Z \rightarrow \mu\mu$ events in data
- replace muons by simulated tau decays using TAUOLA

TAU ENERGY SCALE

- in-situ E/p measurement for p < 20GeV
- test beam measurements for p > 20 GeV

PHYSICS INVOLVING TAU LEPTONS

Event selection

- performed on 2011 data corresponding to $L = 1.34 \text{ fb}^{-1} 1.55 \text{ fb}^{-1}$
- combination of 3 final states: eµ, eThad, µThad
- single lepton trigger (e, μ)
- **µ** (e) p_T > 15 (10) GeV
- opposite high p⊤ lepton-tau pair
- transverse mass, $m_{\rm T} = \sqrt{2 p_{\rm T}(\ell) \cdot E_{\rm T}^{\rm miss} \cdot \left(1 \cos \Delta \phi(\ell, E_{\rm T}^{\rm miss})\right)} < 50 \, {\rm GeV}$
- $\Sigma \cos(\Delta \phi) > -0.15$ (against W+jets)
- visible mass: 35 GeV < m_{vis} < 75 GeV

Background estimation

μ (tag)

QCD multijets

- Iow Monte-Carlo (MC) statistics
- estimated by data-driven matrix method
- correction for electro-weak (EW) backgrounds using MC

Electroweak backgrounds

lepton fakes:

- $Z \rightarrow ee, Z \rightarrow \mu\mu$ tag-and-probe method **T** (probe)
- jet fakes:
 - Z enriched control region

further backgrounds

- normalisation from ₩ enriched control region, shape from MC
- 30 tt, di-boson estimated using MC

Results

$$\sigma(Z \to \tau \tau) \times \mathbf{B} = \frac{N_{\text{obs}} - N_{\text{bkg}}}{A_Z \cdot C_Z \cdot \mathcal{L}}$$

31

 $\sigma = 0.92 \pm 0.02(stat) \pm 0.08(syst) \pm 0.03(lumi) nb$

- measured separately in each channel
- combined result obtained by BLUE (Best Linear Unbiased Estimate) method
- shows very good agreement with NNLO prediction
 - $\sigma_{NNLO} = 0.96 \pm 0.05 \text{ nb}^*$
- K. Melnikov and F. Petriello, *Electroweak gauge boson production at hadron colliders through* $O(\alpha(s)^2)$, Phys. Rev. **D74** (2006) 114017.

R. Gavin, Y. Li, F. Petriello et al., *FEWZ 2.0: A code for hadronic Z production at next-to-next-to-leading order*, arXiv:1011.3540 [hep-ph].

S. Catani, L. Cieri, G. Ferrera, D. de Florian, and M. Grazzini, *Vector boson production at hadron colliders: a fully exclusive QCD calculation at NNLO*, Phys. Rev. Lett. **103** (2009) 082001.

DD1 Scole

$Z \rightarrow \tau \tau \rightarrow e \mu$ cross-section measurement

32

Event selection

- at least I primary vertex with more than 3 tracks
- single lepton trigger (e, μ, τ)
- μ (e) p_T > 15 (10) GeV
- exactly I light isolated lepton
- $Q_{l} * Q_{T} = -|$
- $\Sigma \cos(\Delta \phi) > -0.15$ (against W, tt background)
- $\Sigma_{\mathrm{T}} < |40 \text{ GeV}$ $\Sigma_{\mathrm{T}} = E_{\mathrm{T}}(e) + E_{\mathrm{T}}(\mu) + E_{\mathrm{T}}(jets) + E_{\mathrm{T}}^{\mathrm{miss}}$
- visible mass: 35 GeV $< m_{vis} < 75$ GeV

Sunday, May 6, 2012

SYSTEMATICS

- trigger efficiency
- efficiency of lepton reconstruction, identification, isolation
- hadronic tau identification efficiency and misidentification rate
- energy scale
- background estimation
 - QCD multi-jets: Ros/ss
 - Z/W: statistical error on normalisation factor
 - acceptance systematics
 - proton PDF (use different PDF sets)
 - modeling of W/Z production (use MC@NLO interfaced to HERWIG)

Final State	Fiducial cross section $\sigma^{fid}(Z \to \tau \tau) \times B(\tau \to)$
$ au_{\mu} au_{h}$	$20.0 \pm 0.3(\text{stat}) \pm 2.0(\text{syst}) \pm 0.7(\text{lumi}) \text{ pb}$
$ au_e au_h$	$15.9 \pm 0.4(stat) \pm 2.0(syst) \pm 0.6(lumi) \text{ pb}$
$ au_e au_\mu$	$4.7 \pm 0.2(\text{stat}) \pm 0.4(\text{syst}) \pm 0.2(\text{lumi}) \text{ pb}$
Final State	Total cross section $\sigma(Z \rightarrow \tau \tau, m_{inv} [66 - 116 \text{ GeV}])$
$ au_{\mu} au_{h}$	$0.91 \pm 0.01(\text{stat}) \pm 0.09(\text{syst}) \pm 0.03(\text{lumi}) \text{ nb}$
$ au_e au_h$	$1.00 \pm 0.02(\text{stat}) \pm 0.13(\text{syst}) \pm 0.04(\text{lumi}) \text{ nb}$
$ au_e au_\mu$	$0.96 \pm 0.03(\text{stat}) \pm 0.09(\text{syst}) \pm 0.04(\text{lumi}) \text{ nb}$

STANDARD MODEL HIGGS

$SM H \rightarrow TT$

Common object selection

Electrons

- ETcluster> 16 GeV
- 0 < |η| < 1.37 or
- I.52 < |η| < 2.47
- medium (tight)identification for eµ (eT)

Muons

- inner detector track has to match muon spectrometer track
- $p_T > 10 \text{ GeV}(e\mu, \mu\mu);$
- рт > 15 GeV (**µт**)
- **|η**| < 2.4
- long. IP < 10 mm
- quality criteria

Taus

- $E_T^{vis} > 20 \text{ GeV}$
 - $< |\eta| < 1.37$ or
 - $1.52 < |\eta| < 2.47$
- CUTS loose ID
- I or 3 charged tracks
- |Q| = |

Jets

- $E_T > 20 \text{ GeV}$ anti-kT jets (R = 0.4)
- jet cleaning • |**η**| < 4.5 overlap resolved in \mathcal{Q} rder: μ , e, τ , jet

$SMH \rightarrow \tau \tau \rightarrow \parallel + 4 \upsilon$

- four categories defined:
 - H + 2-jet VBF
 - H + 2-jet VH
 - H + I -jet
 - H + 0-jet
- only events failing 2-jet cuts
- invariant jet + di-tau mass m_{ττj} > 225 GeV
- all events failing 1-/2-jet category
- uses effective mass, $m_{\tau\tau}^{eff}$ due to poor resolution

- 2-jets with $E_T > 40$ (25) GeV
- separated jets, $\Delta \eta_{jj} > 3$ (VBF), $\Delta \eta_{jj} < 2$ (VH)
- invariant dijet mass m_{jj} > 350 GeV (VBF), 50 GeV < m_{jj} < 350 GeV (VH)
- third jet (E_T > 25 GeV, $|\boldsymbol{\eta}| < 2.4$) veto

Common event selection

- single-/di-lepton trigger
- leading jet $E_T > 40 \text{ GeV}$
- $E_T^{miss} > 20$ (40) GeV (ee, $\mu\mu$)
- $Q_{|}^{*}Q_{|} = -|$
- $\Delta \phi(I,I) > 2.5$ rad
- b-jet ($E_T > 25$ GeV) veto (against tt)
- leptonic transverse energy, H_T^{lep} < 120 GeV
- collinear approximation, $0 < x_1, x_2 < 1$
- invariant mass of taus and jet,

 $30 \text{ GeV} < m_{\parallel} < 100 (75) \text{ GeV} (ee, \mu\mu)$

$SMH \rightarrow TT \rightarrow TT + 3U$

- seven categories defined:
- depending on jet properties and E_T^{miss}
 - H + 2-jet VBF
 - H + I -jet
 - H + 0-jet
- $E_T^{miss} > 20 \text{ GeV}$
- ≥ I -jets with E_T > 25 GeV failing VBF selection
- e^{T} and μ^{T} final states considered exclusively
- no jet with $E_T > 25$ GeV
- eT and μT final states considered exclusively
- separated in $E_T^{miss} > 20$ GeV and $E_T^{miss} \leq 20$ GeV

Common event selection

- single-lepton trigger
- leading jet $E_T > 40 \text{ GeV}$
- one light lepton with $E_T > 25$ GeV (e), pT > 20 GeV (μ)
- $Q_{I}^{*}Q_{T} = -I$
- transverse mass, $m_T \leq 30 \text{ GeV}$ (against tt)

- \geq 2-jets with E_T > 25 GeV
- $E_T^{miss} > 20 \text{ GeV}$

38

- separated jets, $\Delta \eta_{jj} > 3$
- invariant dijet mass m_{jj} > 300 GeV
- tau, lepton in η range between jets
- includes e^{T} and μ^{T} final states due to limited statistics

$SM \mapsto \tau \tau \rightarrow II(I = e, \mu)$

Final mass distributions

39

$SM H \rightarrow \tau \tau \rightarrow |\tau_h(| = e, \mu)$

Final mass distributions

BACKGROUND ESTIMATION

- main background (multi-jet, $Z \rightarrow \tau \tau$) estimated by data-driven methods
- normalisation and shape extracted from data
- further backgrounds (diboson, tt) estimated from MC

- embedding technique $Z \rightarrow \tau \tau$ to model shape
- fitting track multiplicity (in $\Delta R < 0.6$) of taus simultaneously
- multi-jet template from same sign control region
- Z→TT template from MC
- fit result used to normalise embedded sample
- multi-jet estimation by 2-dimensional fit in signal region

- vary multi-jet template by requiring additional light lepton (enhancing W+jets)
- Z→TT :11.6 %
- multi-jet: 22 %

Sunday, May 6, 2012

CHARGED HIGGS

Sunday, May 6, 2012

$tt \rightarrow bbWH^+ \rightarrow bb(|\mathbf{U})(\mathbf{TU})$

Event selection

- single lepton trigger
- exactly one lepton with $p_T > 25$ (20) GeV e (μ)
- exactly one identified \mathbf{T} with $p_T > 20$ GeV
- $\bullet Q_{\mathsf{T}} * Q_{\mathsf{I}} = -\mathsf{I}$
- \geq 2 jets with p_T > 20 GeV
 - \geq I of them b-tagged
- •Σ p_T (tracks associated to primary vertex) > 100 GeV

BACKGROUND ESTIMATION

46

all backgrounds estimated from data

$$N_{\tau} = N_{\text{embedded}} \cdot (1 - c_{\tau \to \mu}) \frac{\epsilon^{\tau + E_{\text{T}}^{\text{miss}} - \text{trigger}}}{\epsilon^{\mu - \text{ID}, \text{trigger}}} \cdot \mathcal{B}(\tau \to \text{hadrons} + \nu)$$

• example: real tau decays

•

- apply embedding technique
- control sample of tt-like μ +jets events
- replaced by simulated T decays
- shape taken from embedded sample

normalisation

BACKGROUND ESTIMATION

multi-jet

- fit of E_T^{miss} shape
- CR defined by modified τ -ID and b-tag requirement
 - **τ**'s passing loose ID but fail tight; no b-jet
 - m_{jjb} cut removed
- contamination by other backgrounds < 1% (subtracted from MC)
- differences in shape between SR and CR treated as systematics

- electron/jet fakes
- tt,W+jets, single top quark production

- CR defined by $Z \rightarrow ee$ selection (electron fakes)
- CR defined by W+jets selection (jet fakes)
 - main difference: b-jet fake probability
 - → take quark-gluon ratio obtained by simulation as sytematics
- fake factors applied to simulated tt, single-top, $W/Z/\gamma^*$ +jets events

real taus

- embedding technique
- control sample of tt-like μ +jets events
- replaced by simulated τ decays
- control sample
- single **µ** trigger
- exactly one isolated μ with p_T > 25 GeV
- no isolated electron with $E_T > 20 \text{ GeV}$
- ≥ 4 jets with p_T > 20 GeV (≥1 of them b-tagged)
- $E_{T^{miss}} > 35 \text{ GeV}$ 47

normalisation

$$N_{\tau} = N_{\text{embedded}} \cdot (1 - c_{\tau \to \mu}) \frac{\epsilon^{\tau + E_{\text{T}}^{\text{miss}} - \text{trigger}}}{\epsilon^{\mu - \text{ID}, \text{trigger}}} \cdot \mathcal{B}(\tau \to \text{hadrons} + \nu)$$

Sunday, May 6, 2012

SUSY SEARCHES INVOLVING TAU LEPTONS

Sunday, May 6, 2012

Model Parameters

- Messenger mass: $M_{mess} = 250 \text{ TeV}$
- no. of SU(5) messengers: $N_5 = 3$
- **µ** > 0
- scale factor for gravitino mass: $C_{grav} = 1$