Combination of Electroweak and QCD Effects to Charged Current Drell Yan

Cathy Bernaciak

ITP Universität Heidelberg

Pheno 12 Symposium

May 7-9, 2012

in collaboration with Doreen Wackeroth

Importance of Precise M_W Measurement

Charged Current (CC) & Neutral Current (NC) Drell-Yan - valuable physics

 \Rightarrow improved SM Higgs mass constraint

• uncertainty from radiative corrections:

Tevatron EW Working Group 2012

⇒CDF-II: 4 of 19 MeV ⇒DØ-II: 7 of 26 MeV

• anticipated LHC measurement of ΔM_W to within 15 MeV Haywood et al 2000

⇒ precise theoretical handling of higher-order QCD and EW corrections

WGRAD2^{1,2} is a MC code for charged-current (CC) Drell-Yan with full NLO EW corrections

$$d\sigma = \sum_{\text{flavors}} dx_1 \, dx_2 \, f_1(x_1) \, f_2(x_2) \left[d\hat{\sigma}_{\mathsf{B}} + \underbrace{d\hat{\sigma}_{\mathsf{v+s}}}_{\sim \delta_s} + \int_{1,2} \frac{dz}{z} \underbrace{d\hat{\sigma}_{\mathsf{HC}}(z)}_{\sim \delta_c} + \int_{\delta_s, \delta_c} d\Phi_{\mathsf{rad}} d\hat{\sigma}_{\mathsf{H\bar{C}}} \right]$$

soft, collinear divergences treated with 2-cutoff phase space slicing³ technique

 \Rightarrow dependence on δ_s and δ_c must cancel in physical result

• **options/switches:** gauge invariant FS, IS, interference subsets of photon radiation for separate study

¹U.Baur and D.Wackeroth, Phys. Rev. **D70**, 073015 (2004), hep-ph/0405191

²U.Baur,S.Keller and D.Wackeroth, Phys. Rev. **D59**, 013002 (1999), hep-ph/9807417

³B.W. Harris, J.F. Owens, Phys. Rev. D65, 094032 (2002), hep-ph/0102128

POWHEG-BOX

POsitiveWeight HardestEvent Generator^{4,5,6}

- contains NLO QCD corrections matched to Parton Shower (PYTHIA and HERWIG) for several processes (POWHEG-BOX)
- POWHEG method:
 - 1_{\cdot} generate events with the hardest radiation at NLO
 - 2. feed events into PYTHIA/HERWIG, all showering is softer than the first, hardest event
- POWHEG master formula:

$$d\sigma = \sum_{\text{flavors}} \bar{\mathsf{B}}(\Phi_n) d\Phi_n \left\{ \Delta(\Phi_n, p_T^{\min}) + \sum_{\alpha_r} \frac{\left[d\Phi_{\mathsf{rad}} \Delta(\Phi_n, k_T > p_T^{\min}) R(\Phi_{n+1}) \right]}{B(\Phi_n)} \right\}$$

• $\bar{B} \Rightarrow$ exact NLO differential cross-section \Rightarrow FKS subtraction • $\Delta(\Phi_n, k_T) \Rightarrow$ Sudakov form-factor \Rightarrow ensures hardest event

⁴P.Nason, JHEP 0411 (2004) 040, hep-ph/0409146

⁵S.Frixione,P.Nason and C. Oleari, *JHEP*0711 (2007) 070, arXiv:0709.2092

⁶S.Alioli,P.Nason,C. Oleari and E.Re, JHEP 1006 (2010) 043, arXiv:1002.2581

⁷S.Alioli,P.Nason,C. Oleari and E.Re, JHEP 0807 (2008) 060, arXiv:0805.4802

$WGRAD2 + POWHEG-W \Rightarrow POWHEG-W_ew-BW$

We incorporate the EW corrections into \overline{B} :

$$\bar{\mathsf{B}}(\Phi_2) = \mathsf{B}(\Phi_2) + V_{\mathsf{QCD}}(\Phi_2) + V_{\mathsf{EW}}(\Phi_2) + \int_{\oplus} \frac{dz}{z} \left[\mathsf{G}_{\oplus,\mathsf{QCD}}(\Phi_{2,\oplus}) + \mathsf{G}_{\oplus,\mathsf{EW}}(\Phi_{2,\oplus})\right]$$

$$+ \int_{\ominus} \frac{dz}{z} \left[\mathsf{G}_{\ominus,\mathsf{QCD}}(\Phi_{2,\ominus}) + \mathsf{G}_{\ominus,\mathsf{EW}}(\Phi_{2,\ominus}) \right] + \sum_{\alpha_r \in \mathsf{IS}} \int d\Phi_{\mathsf{rad},\mathit{IS}} \left[\hat{\mathsf{R}}(\Phi_3) + \mathsf{R}_{\mathsf{EW}}(\Phi_3) \right]$$

 $\Rightarrow V_{EW}(\Phi_2)$ virtual + soft finite EW corrections

 \Rightarrow switch for resonant/non-resonant (box diagrams) effects

$$\Rightarrow$$
 G_{EW}(Φ_2, z) IS and FS collinear EW pieces

- \Rightarrow R_{EW}(Φ_3) finite real piece IS and FS together
 - \Rightarrow switch for IS, FS, interference QED radiation

Resulting public code available within POWHEG-BOX as subprocess W_ew-BW

CB, Doreen Wackeroth arXiv:1201.4804

First, can we get WGRAD2 results from POWHEG-W_BW by turning off NLO QCD? Yes.

	Tevatron, W^+	LHC, W ⁺	LHC, W ⁻
WGRAD2	362.55(2) pb	1059.6(1) pb	759.26(3) pb
POWHEG-W_BW	362.4(2) pb	1059.0(5) pb	758.7(8) pb

Second, are they stable wrt unphysical δ_s and δ_c ? Yes.

(δ_s, δ_c)	Tevatron, W^+	LHC, W ⁺	LHC, W ⁻
0.01, 0.005	362.4(2) pb	1059.0(5) pb	758.7(8) pb
0.01, 0.001	362.4(2) pb	1059.1(7) pb	759.2(5) pb
0.001, 0.0005	362.3(2) pb	1059.4(9) pb	759.4(5) pb
0.001, 0.0001	362.3(2) pb	1059.2(8) pb	759.3(5) pb

Process: $W^{\pm} \rightarrow \mu^{\pm} \nu_{\mu}$ Bare Cuts: $p_T(\mu^{\pm}), p_T(\nu_{\mu}) > 25 \text{GeV}, |\eta_{\mu}| < 1$

$M_T(W)$ Distributions - Tevatron

 $par{p}
ightarrow W^+
ightarrow \mu^+
u_\mu$, $\sqrt{S} =$ 1.96 TeV, Pythia showering

 $M_{T}(W) = \sqrt{2p_{T}(\ell)p_{T}(\nu)(1 - \cos(\Delta(\phi_{\ell\nu})))}$

- fits of $d\sigma/dM_T(W)$ used to measure M_W
 - ⇒ lineshape sensitive to FS QED effects around Jacobian peak due to collinear logs ~ $\alpha \log(m_l^2/\hat{s})$

•
$$\delta_a = \left[\left(\frac{d\sigma_a}{dO} - \frac{d\sigma_{LO}}{dO} \right) / \frac{d\sigma_{LO}}{dO} \right] \times 100$$

$M_T(W)$ Distributions - LHC

$pp ightarrow W^+ ightarrow \mu^+ u_\mu$, $\sqrt{S}=$ 7 TeV, Pythia showering

 $M_{T}(W) = \sqrt{2p_{T}(\ell)p_{T}(\nu)(1 - \cos(\Delta(\phi_{\ell\nu})))}$

- fits of $d\sigma/dM_T(W)$ used to measure M_W
 - ⇒ lineshape sensitive to FS QED effects around Jacobian peak due to collinear logs ~ $\alpha \log(m_l^2/\hat{s})$

•
$$\delta_a = \left[\left(\frac{d\sigma_a}{d\mathcal{O}} - \frac{d\sigma_{LO}}{d\mathcal{O}} \right) / \frac{d\sigma_{LO}}{d\mathcal{O}} \right] \times 100$$

$p_T(I)$ Distributions - Tevatron

$par{p} ightarrow W^+ ightarrow \mu^+ u_\mu$, $\sqrt{S} =$ 1.96 TeV, Pythia showering

- fits of $d\sigma/dp_T(\mu)$ used to measure M_W
 - ⇒ lineshape sensitive to FS QED effects around Jacobian peak due to collinear logs ~ $\alpha \log(m_l^2/\hat{s})$
 - \Rightarrow IS QCD radiation dampens Jacobian peak

•
$$\delta_a = \left[\left(\frac{d\sigma_a}{d\mathcal{O}} - \frac{d\sigma_{LO}}{d\mathcal{O}} \right) / \frac{d\sigma_{LO}}{d\mathcal{O}} \right] \times 100$$

$p_T(I)$ Distributions - LHC

$pp ightarrow W^+ ightarrow \mu^+ u_\mu$, $\sqrt{S} =$ 7 TeV, Pythia showering

- fits of $d\sigma/dp_T(\mu)$ used to measure M_W
 - ⇒ lineshape sensitive to FS QED effects around Jacobian peak due to collinear logs ~ $\alpha \log(m_l^2/\hat{s})$
 - ⇒ IS QCD radiation dampens Jacobian peak

•
$$\delta_a = \left[\left(\frac{d\sigma_a}{dO} - \frac{d\sigma_{LO}}{dO} \right) / \frac{d\sigma_{LO}}{dO} \right] \times 100$$

Summary: QCD + EW Effects on Distributions

ef

What can we conclude about effects of *combined* EW and QCD corrections on $\frac{d\sigma}{dM_T(W)}$ and $\frac{d\sigma}{dp_T(l)}$?

$$\underbrace{r_2 = \frac{d\sigma_{(QCD+EW)\times PS}}{d\mathcal{O}} / \frac{d\sigma_{QCD\times PS}}{d\mathcal{O}}}_{\text{fect of EW corrections on } \frac{d\sigma}{d\rho_T(\mu)} \text{ in presence of QCD}} \text{ not the same as } \underbrace{r_1 = \frac{d\sigma_{EW}}{d\mathcal{O}} / \frac{d\sigma_{LO}}{d\mathcal{O}}}_{\text{effect of EW corrections only}}$$

- $\mathcal{R} = \frac{p_2}{r_1}$ deviation from unity implies non-additive (interference) EW, QCD effects $\Rightarrow p_T(l)$
- understanding of interplay of QCD and EW corrections to Drell-Yan useful to reduce QED uncertainty in M_W measurement.

Summary: QCD + EW Effects on Distributions

What can we conclude about effects of *combined* EW and QCD corrections on $\frac{d\sigma}{dM_T(W)}$ and $\frac{d\sigma}{dp_T(l)}$?

- $\mathcal{R} = \frac{r_2}{r_1}$ deviation from unity implies non-additive (interference) EW, QCD effects $\Rightarrow p_T(l)$
- understanding of interplay of QCD and EW corrections to Drell-Yan useful to reduce QED uncertainty in M_W measurement.

Bundesministerium für Bildung und Forschung

Some of this work was funded by the BMBF Theorie-Verbund which is ideal for LHC phenomenology