Third-generation Squark Searches at ATLAS

Bart Butler

SLAC National Accelerator Laboratory

PHENO2012 May 7th, 2012

Why heavy flavor SUSY signatures?

SUSY resolves the hierarchy problem and stabilizes the Higgs mass, BUT:

- SUSY, if it exists, is a broken symmetry
- Higgs couplings strongest for the heaviest quark (top)
- stop (\tilde{t}) light (≈ 1 TeV) to avoid fine-tuning (*naturalness*)
- sbottom (\tilde{b}) light as well to avoid too much weak isospin violation
- Left/right-handed squark mixing provides possible mechanism

Light third-generation squarks mean:

- High decay branching ratios from gluino/direct production cross sections

Semi-Data-Driven Background Estimation

All analyses discussed in this talk make use of a common technique to estimate their dominant (typically top) or co-dominant (top and Z+h.f.) backgrounds.

- Choose one or more control regions (CRs) kinematically similar to signal regions (SRs) but preferably enriched in the dominant background
- Take the ratio of the SR yield to the CR yield in Monte Carlo (MC) as a transfer factor

Predicted yield in SR is MC Ratio $\times 1$ *l*-CR yield (corrected for other backgrounds):

$$N_{SR}^{dom} = \left(\frac{N_{SR}}{N_{CR}}\right)_{MC}^{dom} \times \left[N_{CR}^{data} - N_{CR}^{others}\right]$$

MC ratio allows partial cancellation of detector and theoretical uncertainties Details for each analysis are in the backup slides.

Gluino-mediated Simplified Models

Cascade (on-shell \tilde{b}/\tilde{t}):

- $m_{\tilde{g}} > m_{\tilde{b}/\tilde{t}} > m_{\tilde{\chi}^0}$
- $m_{\tilde{q}_{1,2}} >> m_{\tilde{b}/\tilde{t}}$
- $m_{\tilde{g}}$ and $m_{\tilde{b}/\tilde{t}}$ varied
- $m_{\tilde{\chi}^0}$ set to 60 GeV

- Gluino (ğ)-mediated sbottom/stop (*b*/*t*) decays (gluino-mediated bottom decay diagram shown).
- Two related phenomenological models used for optimization and limits, both with 4 *b*-jets + \not{E}_T final state signature
- For more information on simplified models, see arXiv:1105.2838
- **3-body (off-shell** \tilde{b}/\tilde{t}):
 - $m_{\tilde{b}/\tilde{t}} >> m_{\tilde{g}} > m_{\tilde{\chi}^0}$
 - $m_{\tilde{q}_{1,2}} >> m_{\tilde{b}/\tilde{t}}$
 - $m_{\tilde{g}}$ and $m_{\tilde{\chi}^0}$ varied
 - \tilde{b}/\tilde{t} is off-shell, decay chain is effectively $\tilde{g} \rightarrow b\bar{b}/t\bar{t} + \tilde{\chi}^0$

$\tilde{g} \rightarrow \tilde{b}$ Baseline Offline Selections - arXiv:1203.6193

- 2.05 fb⁻¹ of data collected with the ATLAS detector in 2011 (same for all analyses in this talk)
- Single jet + $\not\!\!\!E_T$ trigger (hadronic channel)
- Baseline offline selections have several different motivations
- Total top uncertainty is between 15-40%, as is the total background uncertainty

Motivation	Cut	Details
Trigger	1 jet with $p_{\rm T}$ > 130 GeV	Turn-on plateau
mggei	$\not\!$	Turn-on plateau
QCD	$\Delta\phi(J1/2/3, \not\!\!\!E_T) > 0.4$	Fake $\not\!\!\!E_T$ due to mis-measured jets
Rejection	$\not\!$	
Signal	Lepton vetos (e, μ)	No loose e or μ
Enhancement	2 additional jets with $p_{\rm T}$ > 50 GeV	
	$\geq 1 b$ -tagged jets (60% eff.)	"JetFitter" + neural network

$$m_{eff} \equiv \sum_{1,2,3} p_T^{jet} + \not\!\!\! E_T$$

$\tilde{g} \rightarrow \tilde{b}$ Signal Regions

Multivariate optimization procedure:

- Use discovery significance predictions from Monte Carlo simulation
- Create large set of "optimal" signal regions (SRs), one for each point in the signal grids
- Reduce systematically the number of signal regions while ensuring broad sensitivity.

Most sensitive SR

	$m_{eff} > 500 \mathrm{GeV}$	$m_{eff} > 700 \text{ GeV}$	$m_{eff} > 900 \text{ GeV}$
$\geq 1 b$ -tag	SR0-A1	SR0-B1	SR0-C1
$\geq 2 b$ -tag	SR0-A2	SR0-B2	SR0-C2
	B. Bu	tler Third-generation Squar	k Searches at ATLAS

$\tilde{g} \rightarrow b$ Signal Region Data/Simulation Comparisons

 $\geq 1 b$ -tag $\geq 2 b$ -tags Events / 100 GeV Events / 100 GeV ATLAS ATLAS Data 2011 Data 2011 10 L dt ~ 2.05 fb⁻¹, s = 7 TeV HH SM Total L dt ~ 2.05 fb⁻¹, is = 7 TeV HH SM Total top production top production 0-lepton, SR0-A1 0-lepton, SR0-A2 W production 10 ultiviet production multi-jet production m; = 800 GeV, m. = 300 GeV m; = 800 GeV, m. = 300 GeV 102 = 800 GeV, m, = 600 GeV m_g = 800 GeV, m_b = 600 GeV m_{eff} 10 10 data / exp lata / exp 200 200 1400 1600 1800 1000 1200 1400 m_{eff} [GeV] m., [GeV] Events / 50 GeV Events / 50 GeV ATLAS ATLAS Data 2011 Data 2011 10 HH SM Total HH SM Total L dt ~ 2.05 fb⁻¹, (S = 7 TeV L dt ~ 2.05 fb⁻¹, fs = 7 TeV top production 0-lepton, SR0-A1 Winneduction 0-lepton, SR0-A2 W production 10 diboson production ultiviet production nulti-jet production mg = 800 GeV, m, = 300 GeV m_g = 800 GeV, m₂ = 300 Ge m_{it} = 800 GeV, m₂ = 600 GeV = 800 GeV, m- = 600 GeV ₿т data / exp data / exp E^{miss}_T [GeV] E_T^{miss} [GeV] arXiv:1203.6193

B. Butler

Limits on 3-body $\tilde{g} \to \tilde{b}$ *Models* ($\tilde{g} \to b\bar{b} + \tilde{\chi}^0$)

LSP masses below 300 GeV are excluded for gluino masses in the range 200-900 GeV, if $m_{\tilde{g}} - m_{\tilde{\chi}^0} > 100$ GeV

Limits on Cascade $\tilde{g} \to \tilde{b}$ Models $(\tilde{g} \to \tilde{b}, \tilde{b} \to b + \tilde{\chi}^0)$

$\tilde{g} \rightarrow \tilde{t}$ Signal Regions - arXiv:1203.6193

- 2.05 fb⁻¹ of data collected with the ATLAS detector in 2011
- Single lepton (+ jet) triggers
- Top/W/Z/diboson estimate done together with semi-DD approach
- Total background systematic uncertainty 35% to 55%

Motivation	Cut	Details
Triggor	$1 e(\mu)$ with $p_{\rm T} > 25(20)$ GeV	Turn-on plateau
Inggei	1 jet with $p_{\rm T} > 60 {\rm ~GeV}$	Turn-on plateau (muon)
W+jets Rej.	$m_T > 100 \text{ GeV}$	$ \mathbb{E}_T \text{ from } W \to l \nu $
Signal	$\not\!$	
Enhancement	3 additional jets with $p_{\rm T}$ > 50 GeV	
	$\geq 1 b$ -tagged jets (60% eff.)	"JetFitter" + neural network
Signal	$m_{eff} > 700 \text{ GeV}$	SR1-D
Regions	$m_{eff} > 700 \text{ GeV}, \not\!\!\!E_T > 200 \text{ GeV}$	SR1-E

$$m_T \equiv \sqrt{2 \times p_T^{lep} \times \not\!\!\!E_T \times (1 - \cos(\Delta \phi_{lep, \not\!\!\!E_T}))}$$
$$m_{eff} \equiv \sum_{1, 2, 3, 4} p_T^{iet} + p_T^{lep} + \not\!\!\!E_T$$

$\tilde{g} \rightarrow \tilde{t}$ Signal Region Data/Simulation Comparisons

1-electron

B. Butler

Third-generation Squark Searches at ATLAS

Limits on 3-body $\tilde{g} \to \tilde{t}$ *Models* $(\tilde{g} \to t\bar{t} + \tilde{\chi}^0)$

LSP masses below 50 GeV are excluded for gluino masses below 750 GeV while LSP masses below 160 GeV are excluded for $m_{\tilde{g}} = 700$ GeV

4.7 fb^{-1} Inclusive Jets + $\not\!\!\!E_T$ Limits on 3-body $\tilde{g} \to \tilde{t}$ Models

Limits on Cascade $\tilde{g} \to \tilde{t}$ Models ($\tilde{g} \to \tilde{t}, \tilde{t} \to t + \tilde{\chi}^0$)

$\tilde{b}\tilde{b}$ Event Selection - arXiv:1112.3832

Sbottom Pair Simplified Model

$ilde{b} ilde{b}$ Signal Region Data/Simulation Comparisons

Limits on $\tilde{b}\tilde{b}$ *Production* $(\tilde{b} \rightarrow b + \tilde{\chi}^0)$

it GMSB Event Selection - ATLAS-CONF-2012-036

- 2.05 fb⁻¹ (ATLAS 2011)
- Single lepton (+ jet) triggers
- Total σ_{bkg} 21% (SR1) and 14% (SR2)
- Final state signature ≥ 1 *b*-jets, 2 opposite-sign same-flavor leptons consistent with m_Z , and $\not \!\!\!\! E_T$

M. Asano et al., JHEP 12, 019 (2010)

Motivation	Cut	Details
Trigger	$1 e(\mu)$ with $p_{\rm T} > 25(20)$ GeV	Turn-on plateau
inggei	1 jet with $p_{\rm T}$ > 60 GeV	Turn-on plateau (muon)
Signal	2 SF/OS lepton, 86 GeV $< m_{ll} <$ 96 GeV	Z mass window
Enhancement	1 additional jet with $p_{\rm T}$ > 50 GeV	
	≥ 1 <i>b</i> -tagged jets (60% eff.)	"JetFitter" + neural network
Signal	$\not\!$	SR1, large $\Delta m(\tilde{t}, \tilde{\chi}^0)$, light \tilde{t}
Regions	$\not\!$	SR2, small $\Delta m(\tilde{t}, \tilde{\chi}^0)$

it GMSB Signal Region Data/Simulation Comparisons

Limits on *t* Production (GMSB)

Neutralino masses below 220 GeV are excluded for stop masses below 270 GeV, and below stop masses of 310 GeV for 125 GeV $< m_{\tilde{v}^0} < 220$ GeV

Summary of 2.05 fb^{-1} Heavy Flavor SUSY Searches

3-body

Cascade

Direct

Looking forward to many full 5 fb^{-1} 7 TeV results and to analyzing the incoming 8 TeV data!

Backup

$\tilde{g} \rightarrow \tilde{b}$ Top Background Estimation

For top backgrounds (dominant) a semi data-driven approach based on 1-lepton control regions (CRs) was used:

- Exactly 1 electron (muon) with $p_T > 25$ (20) GeV
- \geq 3 jets with $p_T > 130, 50 \text{ GeV}$
- $E_{\rm T}^{\rm miss} > 130~{\rm GeV}$
- 40 < m_T (transverse mass of lepton and $E_{\rm T}^{\rm miss}$) < 100 GeV
- $m_{eff} > 600 \text{ GeV}$
- $\geq 1, \geq 2 b$ -tags

Events/ 50 GeV ATLAS L dt = 2.05 fb⁻¹, \sqrt{s} = 7 TeV Data 2011 SM Total 102 1-muon, CR0-2 top production W production 10 data / exp arXiv:1203 6193 more [GeV]

Predicted yield in SR is MC Ratio \times 1 *l*-CR yield (corrected for non-*t*):

$$N_{SR}^{top} = \left(\frac{N_{SR}}{N_{CR}}\right)_{MC}^{top} \times \left[N_{CR}^{data} - N_{CR}^{W/Z,MC} - N_{CR}^{others,MC} - N_{CR}^{QCD}\right]$$

MC ratio allows partial cancellation of detector and theoretical uncertainties Total top uncertainty is between 15-40%, as is the total background uncertainty

Example CR

The W/Z backgrounds were estimated using Monte Carlo simulation.

The QCD background was estimated from data, as leading-order Monte Carlo was not sufficient to provide a reliable estimate.

- Validated by comparing data and pseudoevent distributions in QCD-enriched ($\Delta \phi(jet, \not \!\!\! E_T) < 0.4$) control regions.

$\tilde{g} \rightarrow \tilde{b}$ Background Systematic Uncertainties

MC-based (W/Z) - 30-80%

- Jet energy scale/resolution: 20-40%
- *b*-tagging efficiency: 20-35%
- Theoretical: 25-30%
- W/Z+heavy flavor: 70%
- Integrated luminosity: 3.7%

QCD - 50-70%

	SR	JES/	b-tag	lepton ID	top	others	total
		JER			theory		
	SR0-A1	4	3	2	11	10	15
'n	SR0-B1	3	3	2	20	10	22
	SR0-C1	3	4	2	35	11	37
	SR0-A2	3	3	2	15	17	23
	SR0-B2	3	4	2	20	10	22
	SR0-C2	3	2	2	30	12	32

To	р-	15-	40	%
-0	<u>۲</u>		.0	<i>,</i> c

arXiv:1203.6193

 $\tilde{g} \rightarrow \tilde{b}$ Signal Region Data/Simulation Comparisons

Good agreement is observed between the Standard Model expectation and data for all signal regions.

SR	Тор	W/Z	multi-jet/	Total	Data
			di-boson		
SR0-A1	705 ± 110	248 ± 150	53 ± 21	1000 ± 180	1112
SR0-B1	119 ± 26	67 ± 42	7.3 ± 4.7	190 ± 50	197
SR0-C1	22 ± 9	16 ± 11	1.5 ± 1	39 ± 14	34
SR0-A2	272 ± 70	22.5 ± 15	21 ± 12	316 ± 72	299
SR0-B2	47 ± 11	4.5 ± 3	2.8 ± 1.7	54 ± 11	43
SR0-C2	8.5 ± 3	0.8 ± 1	0.5 ± 0.4	9.8 ± 3.2	8

arXiv:1203.6193

$\tilde{g} \rightarrow \tilde{t}$ Top/W/Z/diboson Background Estimation

For top/W/Z/diboson backgrounds (dominant) the same semi data-driven approach used for the top estimation in the $\tilde{g} \rightarrow \tilde{b}$ analysis was also used, though the CR differs (red):

- Exactly 1 electron (muon) with $p_T > 25$ (20) GeV
- \geq 4 jets with $p_T > 60$, 50 GeV
- $40 < m_T < 100 \, \text{GeV}$
- $m_{eff} > 600 \, {\rm GeV}$
- $\geq 1 b$ -tag

Predicted yield in SR is MC Ratio \times 1 *l*-CR yield (corrected for QCD):

$$N_{SR}^{non-QCD} = \left(\frac{N_{SR}}{N_{CR}}\right)_{MC}^{non-QCD} \times \left[N_{CR}^{data} - N_{CR}^{QCD}\right]$$

Total background systematic uncertainty between 35-55%

6/15

$\tilde{g} \rightarrow \tilde{t}$ Signal Region Data/Simulation Comparisons

Good agreement is observed between the Standard Model expectation and data for all signal regions.

SR	SM background	Data
SR1-D (<i>e</i>)	$39 \pm 12 (39)$	43
SR1-D (μ)	$38 \pm 14 (37)$	38
SR1-E (<i>e</i>)	8.1 ± 3.4 (7.9)	11
SR1-Ε (μ)	6.3 ± 4.2 (6.1)	6

arXiv:1203.6193

$\tilde{g} \rightarrow \tilde{b}/\tilde{t}$ Effective Cross Section Limits

Signal-independent upper limits on the non-SM contributions to each signal region can be defined in terms of event yield and effective cross section ($\sigma_{eff} = \sigma \times BR \times \epsilon$).

SR	95% CL upper limit		
	N events	$\sigma_{\rm vis}({ m fb})$	
	obs. (exp.)	obs. (exp.)	
SR0-A1	578 (516)	282 (251)	
SR0-B1	133 (133)	65 (65)	
SR0-C1	31.6 (34.6)	15.4 (16.9)	
SR0-A2	124 (134)	61 (66)	
SR0-B2	29.6 (31.0)	14.4 (15.0)	
SR0-C2	8.9 (10.3)	4.3 (5.0)	
SR1-D	45.5 (42.1)	22.2 (20.5)	
SR1-E	17.5 (15.3)	8.5 (7.5)	

arXiv:1203.6193

$\tilde{b}\tilde{b}$ Top/W+h.f. Background Estimation

For top/W+h.f. backgrounds a 1-lepton control region was used:

- Exactly 1 electron (muon) with $p_T > 25$ (20) GeV
- $\geq 2 b$ -tagged jets with $p_T > 130, 50 \text{ GeV}$
- $E_{\rm T}^{\rm miss} > 80 \, {\rm GeV}$
- $40 < m_T < 100 \text{ GeV}$

Predicted yield in SR is MC Ratio \times 1*l*-CR yield (corrected for non-*t*/W+h.f.):

$$N_{SR}^{top/W+h.f.} = \left(\frac{N_{SR}}{N_{CR}}\right)_{MC}^{top/W+h.f.} \times \left[N_{CR}^{data} - N_{CR}^{Z,MC} - N_{CR}^{others,MC} - N_{CR}^{QCD}\right]$$

$\tilde{b}\tilde{b}~Z ightarrow u u + bb$ Background Estimation

For the Z+h.f. background a 2-lepton opposite-sign same-flavor control region was used:

- Exactly 2 electrons (muons) with $p_T > 25$ (20) GeV
- $\geq 2 b$ -tagged jets with $p_T > 80, 50 \text{ GeV}$
- "adjusted" E_T^{miss} > 50 GeV
- $80 < m_{ll} < 101 \text{ GeV} (\text{Z mass window})$

The momenta of the leptons were added to the $\not E_T$ to mimic a $Z \to \nu \nu$ decay. The $t\bar{t}$ contribution to this CR is significant ($\approx 50\%$) and was subtracted using a sideband estimate.

arXiv:1112.3832 auxiliary

The total systematic uncertainty on the background estimates varies from 21% to 44%, increases with increasing m_{CT} cut, and is dominated by CR statistical uncertainties.

Sub-dominant uncertainties include:

- Top/W+h.f. theoretical uncertainties, 10-15%. Evaluated using additional MC samples with alternative generator, initial/final state radiation parameters, and fragmentation model
- Jet energy scale/resolution, 6-9%
- *b*-tagging efficiency, 5-8%
- W/Z+h.f. theoretical uncertainties, <5%

b̃b Signal Region Event

$ilde{b} ilde{b}$ Signal Region Data/Simulation Comparisons

Good agreement is observed between the Standard Model expectation and data for all signal regions.

m _{CT}	top, W+h.f.	Z+h.f.	Others	Total SM	Data
GeV	TF	TF	MC+JS		
	(MC)	(MC)			
0	67 ± 10	23 ± 8	36 ± 15	94 ± 16	96
	(60 ± 25)	(16 ± 9)	5.0 ± 1.3	(80 ± 35)	
100	36 ± 10	23 ± 9	21 ± 16	62 ± 13	56
	(34 ± 16)	(12 ± 7)	5.1 ± 1.0	(49 ± 25)	
150	12 ± 5	12 ± 6	2.7 ± 0.0	27 ± 8	28
	(13 ± 8)	(8.3 ± 4.7)	2.7 ± 0.9	(24 ± 13)	
200	3.2 ± 1.6	3.9 ± 3.2	10 ± 0.0	8.1 ± 3.5	10
	(4.1 ± 3.4)	(2.8 ± 1.5)	1.0 ± 0.9	(8.0 ± 4.9)	

arXiv:1203.6193

it Top Background Estimation

For top backgrounds a reversed m_Z control region was used: 15 GeV $< m_{ll} < 81$ GeV or $m_{ll} > 101$ GeV

Predicted yield in SR is MC Ratio \times 1*l*-CR yield (corrected for non-*t*):

$$N_{SR}^{top} = \left(\frac{N_{SR}}{N_{CR}}\right)_{MC}^{top} \times \left[N_{CR}^{data} - N_{CR}^{Z,MC} - N_{CR}^{others,MC} - N_{CR}^{"fake-lepton"}\right]$$

ATLAS Detector

The ATLAS detector is one of two general-purpose detectors built to collect pp collision data from the Large Hadron Collider at CERN. It consists of 4 major components: the inner detector (tracking), the calorimeters (energy measurements), the muon spectrometer, and the magnet and cooling systems.

