Enhanced SU(2) D-term and Higgs Diphoton BR Based on work in progress with Gabriel Lee, Arun M Thalapillil and Carlos E. M. Wagner

Ran Huo

University of Chicago

Pheno 2012 May 7, 2012

・ロト ・回ト ・ヨト ・

Motivation: Experimental Results

- LHC and Tevatron Experiments are starting to test the SM Higgs above the LEP limit.
- Excess is seen in the conventional diphoton channel as expected, at both ATLAS and CMS.
- However, in other channels the signal is not so pronounced as suggested by diphoton channel.

Although the statistics is still low, we will take the following points of view:

- We do have discovered the Higgs boson with a mass of about 125 GeV.
- $\bullet\,$ The Higgs is different from the SM prediction, as data suggests tentatively, in

$$\sigma \times Br(pp \rightarrow h \rightarrow X_{SM}) = \sigma(pp \rightarrow h) \frac{\Gamma(h \rightarrow X_{SM})}{\Gamma_t},$$

which is directly measured.

- $\sigma(pp \rightarrow h)$ is not boosted compared to SM, otherwise we should see effects in all the other channels.
- The Higgs diphoton decay branching ratio is enhanced.

A B A B A B A

• The Higgs diphoton decay is loop induced.

In the SM

$$\Gamma(h \to \gamma \gamma) = \frac{G_F \alpha^2 m_h^3}{128\sqrt{2}\pi^3} \left| A_1(\tau_W) + \sum_f N_c Q_f^2 A_{1/2}(\tau_f) \right|^2, \qquad \tau_i \equiv \frac{m_h^2}{4m_i^2}.$$

- The dominant contribution is from the W^{\pm} loop term $A_1(\tau_W)$, which is -8.32 for a 125 GeV Higgs.
- The fermions have the opposite sign contribution, $\sum_f N_c Q_f^2 A_{1/2}(\tau_f) = 1.84$ which is dominated by top.
- In the decoupling limit of the MSSM, there are sfermion contribution and chargino contribution as well.
- The chargino contribution has the same sign with W^\pm loop.

A D > A P > A B > A

A Systematical Way to Enhance Higgs Diphoton Branching Ratio

• Higgs always comes with Higgs potential vev, in terms of $v + h = v(1 + \frac{h}{v})$. In the form of $m(1 + \frac{h}{v})$, doing derivative with *m* leads to the usual Higgs low energy theorem.

$$\lim_{v\to 0} \mathcal{M}(Xh) = g \sum_{i=f,V} \frac{1}{v} \frac{\partial}{\partial \ln m_i} \mathcal{M}(X).$$

• On the other hand, if the mass term is not completely but partially given by Yukawa coupling with v, instead we should do derivative with v, in the form of $yv(1 + \frac{h}{v})$.

$$\lim_{p\to 0} \mathcal{M}(Xh) = g \sum_{i=f,V} \frac{1}{v} \frac{\partial}{\partial \ln v} \mathcal{M}(X).$$

• In loop induced Higgs diphoton decay, in the large loop mass limit it is

$$\mathcal{L}_{h\gamma\gamma} = -\frac{\alpha}{16\pi} h \left[\sum_{i} \frac{\partial}{\partial v} \ln m_{i}^{2b_{i}} \right] F_{\mu\nu} F^{\mu\nu}.$$

J. R. Ellis. *et al*, Nucl. Phys. B **106**, 292 (1976). A. Falkowski, Phys. Rev. D **77**, 055018 (2008) where the amplitude is given by the vacuum polarization. b_i is their separate contribution to β function.

• If the mass comes in matrix form and there is mixing, $\ln m_i^2 \rightarrow \ln \det M_i^{\dagger} M_i$.

In MSSM and various other models, Higgs Yukawa term only gives small contribution to mass (matrix). We only need to make its contribution negative in sign to the dominant contribution.

• Staus in MSSM

$$\begin{split} M_{\tilde{\tau}}^2 &= \left(\begin{array}{c} M_{\ell}^2 + y_{\tau}^2 v_d^2 + \Delta_{\tilde{e}L} & y_{\tau} v_d (A_e - \mu \tan \beta) \\ y_{\tau} v_d (A_{eij}^* - \mu^* \tan \beta) & M_e^2 + y_{\tau}^2 v_d^2 + \Delta_{\tilde{e}R} \end{array}\right),\\ & \frac{\partial \ln \det M_{\tilde{\tau}}^2}{\partial v} \simeq -\frac{2y_{\tau}^2 |A_e - \mu \tan \beta|^2 v_d}{M_{\ell}^2 M_e^2}. \end{split}$$

M. Carena, S. Gori, N. Shah, C. Wagner, arXiv: 1112.3336

• • • • • • • • • • • • •

• A fourth generation leptons and its mirror, see Pedro's talk

$$\begin{split} M_{\ell} &= \begin{pmatrix} Y_c' \mathbf{v} & M_L \\ M_E & Y_c'' \mathbf{v} \end{pmatrix}, \\ \frac{\partial \ln \det M_{\tilde{\ell}}}{\partial \mathbf{v}} &\simeq -\frac{2y_c' y_c'' \mathbf{v}}{M_L M_E}. \end{split}$$

A. Joglekar, P. Schwaller, C. Wagner, 2012

Another Chargino Sector with Enhanced Coupling

 \bullet As mentioned before, the MSSM chargino has the same mass matrix structure and the same sign amplitude with W^\pm

$$M_{\tilde{\chi}^{\pm}} = \begin{pmatrix} M_2 & \frac{1}{\sqrt{2}} g v \sin \beta \\ \frac{1}{\sqrt{2}} g v \cos \beta & \mu \end{pmatrix}$$

• However the MSSM chargino itself is insufficient for the required enhancement, because the coupling g_2 is too small.

private communication with Tao Liu.

• We replace the MSSM $SU(2)_L$ by $SU(2)_1 \times SU(2)_2$, where the $SU(2)_1$ only couples to the first two generations with coupling constant g_1 , and the $SU(2)_2$ couples to the third generation and two Higgs doublets with coupling constant g_2 .

P. Batra, A. Delgado, D. E. Kaplan and T. M. P. Tait, JHEP 0402, 043 (2004).

イロト イロト イヨト イヨト

The $SU(2)_2$ is strongly coupled, which is expected to give sufficient enhancement of the diphoton BR.

• We introduce a bidoublet superfield Σ as $(2, \overline{2})$ under the two SU(2)s, which spontaneously breaks $SU(2)_1 \times SU(2)_2 \rightarrow SU(2)_L$.

• The superpotential is $W = \lambda S(\frac{1}{2}\Sigma\Sigma - \omega^2)$, where S is a singlet superfield. The induced potential is

$$V_{\Sigma} = -\frac{1}{2}\lambda^2\omega^2\Sigma\Sigma + \text{h.c.} + \frac{1}{4}\lambda^2|\Sigma\Sigma|^2 + m_s^2|\Sigma|^2,$$

where m_s is the soft mass parameter.

- For $m_s^2 \lambda^2 \omega^2 < 0$ the symmetry is spontaneously breaking. Scalar Σ field acquires a vev $\langle \Sigma \rangle = u \mathbf{1}_{2 \times 2}$.
- The Σ vev breaks $SU(2)_1 \times SU(2)_2$ gauge boson W_1 and W_2 to massless SM like $W = (g_1 W_2 + g_2 W_1)/\bar{g}$ and a new $W' = (g_1 W_1 g_2 W_2)/\bar{g}$, where $\bar{g} = \sqrt{g_1^2 + g_2^2}$.
- If the W is required to have a SM weak coupling $g_{SM} = \frac{g_1 g_2}{\overline{g}}$, then the W' have a coupling of $-\frac{g_2}{g_1}g_{SM}$ to Higgs and third generation, and $\frac{g_1}{g_2}g_{SM}$ to the first two generations.

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• The relevant quartic Higgs potential before $SU(2)_1 \times SU(2)_2$ breaking is

$$V_{h+\Sigma} = \frac{1}{8}g_2^2(\operatorname{Tr}\Sigma^{\dagger}\sigma^i\Sigma + H_u^{\dagger}\sigma^iH_u + H_d^{\dagger}\sigma^iH_d)^2 + \frac{1}{8}g_1^2(\operatorname{Tr}\Sigma\sigma^i\Sigma^{\dagger})^2 + \frac{1}{8}g'^2(H_u^{\dagger}H_u - H_d^{\dagger}H_d)^2.$$

 \bullet Integrating out Σ field leads to the quartic potential

$$V_{h} = \frac{1}{8}g_{SM}^{2}\Delta(H_{u}^{\dagger}\sigma^{i}H_{u} + H_{d}^{\dagger}\sigma^{i}H_{d})^{2} + \frac{1}{8}g^{\prime 2}(H_{u}^{\dagger}H_{u} - H_{d}^{\dagger}H_{d})^{2},$$

which is the conventional Higgs quartic potential except for the factor

$$\Delta = \frac{1 + \frac{2m_s^2}{u^2}\frac{1}{g_1^2}}{1 + \frac{2m_s^2}{u^2}\frac{1}{g_1^2 + g_2^2}} > 1.$$

P. Batra, A. Delgado, D. E. Kaplan and T. M. P. Tait, JHEP 0402, 043 (2004).

• The tree level CP even neutral Higgs mass matrix is $M^2_{H^0} =$

$$\begin{pmatrix} m_A^2 \sin^2\beta + \frac{1}{4} (g_{SM}^2 \Delta + g'^2) v^2 \cos^2\beta & -(m_A^2 + \frac{1}{4} (g_{SM}^2 \Delta + g'^2) v^2) \sin\beta \cos\beta \\ -(m_A^2 + \frac{1}{4} (g_{SM}^2 \Delta + g'^2) v^2) \sin\beta \cos\beta & m_A^2 \cos^2\beta + \frac{1}{4} (g_{SM}^2 \Delta + g'^2) v^2 \sin^2\beta \end{pmatrix}$$

• With relatively small tan β and stop mixing parameter we can achieve a 125 GeV Higgs, which is desirable in our model.

Ran Huo (University of Chicago)

Chargino and Neutralino Mixing Matrice

• For chargino which is relevant to loop amplitude, $M_{ij}^{\pm} =$

$$\begin{pmatrix} M_2 & 0 & \sqrt{2}m_W s_\beta & 0\\ 0 & M_2' & -\frac{g_2}{g_1}\sqrt{2}m_W s_\beta & \sqrt{2}\bar{g}u\\ \sqrt{2}m_W c_\beta & -\frac{g_2}{g_1}\sqrt{2}m_W c_\beta & \mu & 0\\ 0 & \sqrt{2}\bar{g}u & 0 & M_{\tilde{\Sigma}} \end{pmatrix}$$

with $(\tilde{\chi}^{-\prime})^T = (\tilde{W}^-, \tilde{W}^{\prime-}, \tilde{H}^-_d, \tilde{\Sigma}^-)$ on the left coupling to $\tilde{\chi}^{+\prime} = (\tilde{W}^+, \tilde{W}^{\prime+}, \tilde{H}^+_u, \tilde{\Sigma}^+)^T$ on the right.

• For neutralino, $M_{ij}^0 =$

$$\begin{pmatrix} M_{1} & 0 & 0 & -m_{Z}s_{W}c_{\beta} & m_{Z}s_{W}s_{\beta} & 0\\ 0 & M_{2} & 0 & m_{Z}c_{W}c_{\beta} & -m_{Z}c_{W}s_{\beta} & 0\\ 0 & 0 & M_{2}' & -\frac{g_{2}}{g_{1}}m_{Z}c_{W}c_{\beta} & \frac{g_{2}}{g_{1}}m_{Z}c_{W}s_{\beta} & \sqrt{2}\bar{g}u\\ -m_{Z}s_{W}c_{\beta} & m_{Z}c_{W}c_{\beta} & -\frac{g_{2}}{g_{1}}m_{Z}c_{W}c_{\beta} & 0 & -\mu & 0\\ m_{Z}s_{W}s_{\beta} & -m_{Z}c_{W}s_{\beta} & \frac{g_{2}}{g_{1}}m_{Z}c_{W}s_{\beta} & -\mu & 0 & 0\\ 0 & 0 & \sqrt{2}\bar{g}u & 0 & 0 & M_{\tilde{\Sigma}} \end{pmatrix},$$

with $\tilde{\chi}^{0\prime} = (\tilde{B}, \tilde{W}^3, \tilde{W}^{\prime 3}, \tilde{H}^0_d, \tilde{H}^0_u, \tilde{\Sigma}^0)^T$ on both the left and the right.

The sensitive MSSM parameters are tan β , M_2 and μ . The relevant new parameters are $\frac{g_2}{g_1}$, M'_2 , u, m_s and M_{Σ} .

- tan $\beta \lesssim 3$ should be small to maximize the $\frac{\partial \ln \det M_{\tilde{\ell}}}{\partial v} \simeq -\frac{g^2 v \sin \beta \cos \beta}{M_2 \mu}$ off diagonal effect. Allowed by our model.
- $\frac{g_2}{g_1}$ cannot go too large for the sake of perturbativity. $\frac{g_2}{g_1}\lesssim 2.5$
- M_2' have to be light to maximize the \tilde{W}' contribution. $M_2' \sim$ a few hundred GeV.
- M_{Σ} should be large to decouple everything with Σ . $m_s \sim$ a few TeV.

Still TENTATIVE!

A B A B A B A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

- A 125 GeV Higgs can be obtained.
- A 30% ~ 100% Higgs diphoton branching ratio enhancement can be obtained.
- Excluded light chargino can be avoided.

One sample parameter point: $\tan\beta$ 15 4000 GeV M_2 200 GeV μ <u>g</u>2 2.5 $\stackrel{g_1}{M_2}$ 700 GeV 500 GeV и 7000 GeV m, MΣ 10000 GeV 123.07 GeV m_h $\frac{\mathsf{BR}(h \to \gamma \gamma)}{\mathsf{BR}/\mathsf{BR}^{SM}(h \to \gamma \gamma)}$ 3.6772×10^{-3} 1.577 106.8 GeV. $m_{\tilde{\chi}_1^{\pm}}$

- We have provided a model to explain the Higgs diphoton decay branching ratio enhancement.
- The Higgs mass and diphoton BR can be at the desired value.
- A lot of other constraint should be considered:
- Immediately we need to do calculations of the electroweak precision measurement observables, the vacuum stability.
- And perhaps calculation with the gauge coupling unification, the dark matter and so on.

Image: A math a math