

## NLO QCD corrections to $pp/p\bar{p} \rightarrow WWb\bar{b}$

Stefan Dittmaier Albert-Ludwigs-Universität Freiburg



- in collaboration with A.Denner, S.Kallweit and S.Pozzorini -



Physikalisches Institut

Stefan Dittmaier, NLO QCD corrections to  $p\,p\,/\,p\,ar{p}\,
ightarrow\,WWb\,ar{b}$ 

#### Contents

#### 1 Introduction

2 Features of the NLO calculation

#### **3** Numerical results

- 3.1 Fixed versus dynamical scale
- 3.2 Off-shell effects of the top quarks
- 3.3 Comparison to other work

#### 4 Conclusions





# Introduction





## $\mathrm{t}\bar{\mathrm{t}}$ production @ Tevatron/LHC – physics issues

- precision measurement of  $m_{\rm t}$ 
  - $\,\hookrightarrow\,$  cornerstone of EW precision physics / SM fit
- FB asymmetry @ Tevatron
  - $\hookrightarrow$  measurement challenges SM (new physics?)
- top-spin physics @ LHC
- EW top couplings via  $t\bar{t} + \gamma/Z/H$
- tt delivers background to many new-physics searches (large cross section with signatures of missing 𝑘<sub>T</sub>, jets, leptons)
- ⇒ Precision calculations necessary that
  - comprise the relevant fixed-order QCD & EW corrections
  - include the top-quark decays to the relevant partonic final states
    - $\hookrightarrow$  full reactions  $pp/p\bar{p} \rightarrow b\bar{b} + 2\ell 2\nu / \ell \nu 2j/4j$
  - are improved by QCD resummations or matched parton showers
  - are interfaced to Pythia/Herwig/Sherpa for detector simulations





 $\mathrm{t}\bar{\mathrm{t}}$  production @ Tevatron/LHC – physics issues

- precision measurement of  $m_{\rm t}$ 
  - $\,\hookrightarrow\,$  cornerstone of EW precision physics / SM fit
- FB asymmetry @ Tevatron
  - $\hookrightarrow$  measurement challenges SM (new physics?)
- top-spin physics @ LHC
- EW top couplings via  $t\bar{t} + \gamma/Z/H$
- tt
   t
   t
   i delivers background to many new-physics searches

   (large cross section with signatures of missing 
   *𝔅*<sub>T</sub>, jets, leptons)
- ⇒ Precision calculations necessary that
  - comprise the relevant fixed-order QCD & EW corrections
  - include the top-quark decays to the relevant partonic final states  $\hookrightarrow$  full reactions  $pp/p\bar{p} \rightarrow b\bar{b} + 2\ell 2\nu / \ell \nu 2j/4j$
  - are improved by QCD resummations or matched parton showers
  - are interfaced to Pythia/Herwig/Sherpa for detector simulations

Considered in this talk !





## Brief history of precision calculations for hadronic $\mathrm{t}\bar{\mathrm{t}}$ production

- NLO QCD corrections Nason et al. '89; Beenakker et al. '91; Mangano et al. '92; Frixione et al. '95
- NLO EW corrections Beenakker et al. '94; S.Moretti et al. '06; Kühn et al. '06; Hollik et al. '07–'11; Bernreuther et al. '08
- QCD resummations Laenen et al. '92; Catani et al. '96; Berger et al. '96; Kidonakis et al. '97–'01; Bonciani et al. '98; Beneke et al. '09–'11; Czakon et al. '09–'11; Ahrens et al. '10–'11; Kidonakis '10–'11; Aliev et al. '10; Cacciari et al. '11
- Steps towards NNLO QCD Czakon et al. '07–'08; S.D. et al. '07; Kniehl et al. '08; Anastasiou et al. '08; Bonciani et al. '08–'09; Gehrmann-De Ridder et al. '09; Czakon '10–'11

New: total cross section for  $q\bar{q} \rightarrow t\bar{t}$  @ NNLO Bärnreuther, Czakon, Mitov '12

- NLO QCD inclusion of top decays in NWA
- NLO QCD full  $b\bar{b} + 2\ell 2\nu$  final states

Denner et al. '10; Bevilacqua et al. '10

Bernreuther et al. '04-'10; Melnikov et al. '09

 $\hookrightarrow$  results extended in the following (paper in preparation)





## **Features of the NLO calculation**





Stefan Dittmaier, NLO QCD corrections to  $p\,p\,/\,p\,ar{p}\,
ightarrow\,WWb\,ar{b}$ 

#### Leading-order calculation



 $\dots$  W decays attached everywhere

- specific process:  $pp/p\bar{p} \rightarrow \nu_e e^+ \mu^- \bar{\nu}_\mu b\bar{b}$
- # tree diagrams:  $q\bar{q}$ : 31 (14 for on-shell W's)
  - gg: 79 (38 for on-shell W's)
- 2, 1, or 0 intermediate top-quark resonances
- 2 or 1 intermediate W-boson resonances
- 14-dim. phase space  $\rightarrow$  multi-channel Monte Carlo integration





## NLO - virtual corrections

- # 1-loop diagrams: (on-shell W's, fermion loops of one generation)
  - $q\bar{q}$ : 294 (4 hexagons, 24 pentagons, ...)
  - gg: 795 (21hexagons, 96 pentagons, ...)
- most complicated representatives:

hexagons with tensors up to rank 4 for  $q\bar{q}$  and rank 5 for gg



... W decays attached everywhere

• 2, 1, 0 intermediate top-quark resonances





### Treatment of intermediate resonances

## Top-quark resonances

- full off-shellness kept everywhere
  - $\,\hookrightarrow\,$  NLO accuracy in resonant and non-resonant regions
- complex-mass scheme Denner, S.D., Roth, Wieders '05

 $\,\,\hookrightarrow\,\,\mu_{
m t}^2=m_{
m t}^2-{
m i}m_{
m t}\Gamma_{
m t}=$  location of complex pole in propagator

• generic size of off-shell effects in  $\sigma_{
m tot}$ :  $\sim \Gamma_{
m t}/m_{
m t} \lesssim 1\%$  (numerically confirmed)



## Our Feynman-diagrammatic approach for virtual 1-loop corrections

 $\mathcal{M}_{1-\text{loop}} = \sum_{(\text{sub})\text{diagrams }\Gamma} \mathcal{M}_{\Gamma} \quad \text{generated with FeynArts (Küblbeck et al. '90; Hahn '01)}$  $\mathcal{M}_{\Gamma} = \sum_{n} \underbrace{C^{(\Gamma)}}_{\text{colour factor}} \underbrace{F_{n}^{(\Gamma)}}_{\uparrow} \quad \underbrace{\hat{\mathcal{M}}_{n}}_{\text{spin structures like } [\bar{u}_{\text{b}}(k_{\text{b}}) \notin_{g_{1}}(k_{g_{1}}) v_{\bar{\text{b}}}(k_{\bar{\text{b}}})](\varepsilon_{g_{2}}(k_{g_{2}}) \cdot k_{\text{b}}) \dots}_{\text{invariant functions containing}}$  $1\text{-loop tensor integrals } T^{\mu\nu\rho\dots}$ 

$$T^{\mu\nu\rho...} = (p_k^{\mu} p_l^{\nu} p_m^{\rho} ...) T_{kl...} + (g^{\mu\nu} p_m^{\rho} ...) T_{00m...} + ...$$

 $T_{kl...}$  = linear combination of scalar 1-loop integrals  $A_0, B_0, C_0, D_0$ 

- 5-/6-point integrals reduced to 4-point integrals Denner, S.D. '02,'05
- 4-/3-point integrals reduced à la Passarino/Veltman '79 for regular points
- specially designed methods for rescuing cases with small Gram dets. Denner, S.D. '05
- $-A_0, ..., D_0$  with complex masses Denner, S.D. '10

## Features: – advantage: get all colour/spin channels in one stroke

- lengthy algebra automation (Mathematica)  $\sim 4.5$  Mio lines of code
- two independent calculations, one using features of FormCalc (Hahn)



## Runtime of various parts of the calculation

Typical setup:  $-2 \times 10^7$  events before applying cuts

- single 3 GHz Intel Xeon processor
- pgf77 compiler

Some statistics:

|                | $\sigma/\sigma_{ m LO}$ | # events<br>(after cuts) | $(\Delta \sigma)_{ m stat}/\sigma$ | runtime          | time/event       |
|----------------|-------------------------|--------------------------|------------------------------------|------------------|------------------|
| tree level     | 86%                     | $5.3 \times 10^6$        | $0.4 \times 10^{-3}$               | $38\mathrm{min}$ | $0.4\mathrm{ms}$ |
| virtual        | -11%                    | $0.26 \times 10^6$       | $0.6 \times 10^{-3}$               | $13\mathrm{h}$   | $180\mathrm{ms}$ |
| real + dipoles | 49%                     | $10 \times 10^6$         | $3 \times 10^{-3}$                 | $40\mathrm{h}$   | $14\mathrm{ms}$  |
| total          | 124%                    |                          | $4 \times 10^{-3}$                 | $53\mathrm{h}$   |                  |

 $\hookrightarrow$  Performance very good !





## **Numerical results**





Stefan Dittmaier, NLO QCD corrections to  $p\,p\,/\,p\,ar{p}\,
ightarrow\,WWb\,ar{b}$ 

#### 3.1 Fixed versus dynamical scale

Scale dependence of integrated cross sections





Stefan Dittmaier, NLO QCD corrections to  $pp/p\bar{p} 
ightarrow WWbar{b}$ 

#### NLO QCD corrections to $p_{\rm T}$ distributions – example: leptonic $p_{\rm T}$

Denner, S.D., Kallweit, Pozzorini '12



Fixed scale implies large negative corrections at high  $p_{\rm T}$ 

(Bands correspond to scale variations by factors of 2.)



#### NLO QCD corrections to $p_{\rm T}$ distributions – example: leptonic $p_{\rm T}$

Denner, S.D., Kallweit, Pozzorini '12



Dynamical scale leads to much flatter *K* factor

(Bands correspond to scale variations by factors of 2.)



#### 3.2 Off-shell effects of the top quarks

### Numerical $\Gamma_{\rm t} \rightarrow 0$ limit for integrated cross sections



- virtual and real corrections involve terms  $\propto \alpha_s \ln \Gamma_t$  $\hookrightarrow$  terms connected to IR singularities of on-shell top's and cancel in sum
- linear dependence on  $\Gamma_t$  = non-trivial check

tt NWA versus WWbb calculation Denner, S.D., Kallweit, Pozzorini, Schulze [arXiv:1203.6803]

| Collider | $\sqrt{s}  [\text{TeV}]$ | order | $\sigma_{\mathrm{t}\overline{\mathrm{t}}}^{\mathrm{NWA}}$ [fb] | $\sigma_{\rm WWb\bar{b}} \; [\rm fb]$ | $rac{\sigma_{ m t\bar t}^{ m NWA}}{\sigma_{ m WWbar b}} - 1$ | $rac{\sigma_{ m WWbar{b}}^{\Gamma_{ m t} ightarrow 0}}{\sigma_{ m WWbar{b}}} - 1$ |
|----------|--------------------------|-------|----------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------|------------------------------------------------------------------------------------|
| Tevatron | 1.96                     | LO    | 44.691(8)                                                      | 44.310(3)                             | +0.86(2)%                                                     | +0.8%                                                                              |
|          |                          | NLO   | 42.16(3)                                                       | 41.75(5)                              | +0.98(14)%                                                    | +0.9%                                                                              |
| LHC      | 7                        | LO    | 659.5(1)                                                       | 662.35(4)                             | -0.43(2)%                                                     | -0.4%                                                                              |
|          |                          | NLO   | 837(2)                                                         | 840(2)                                | -0.41(31)%                                                    | -0.2%                                                                              |
| LHC      | 14                       | LO    | 3306.3(1)                                                      | 3334.6(2)                             | -0.85(1)%                                                     | _                                                                                  |
|          |                          | NLO   | 4253(3)                                                        | 4286(7)                               | -0.77(19)%                                                    | —                                                                                  |

- good agreement between our  $\sigma_{WWb\bar{b}}^{\Gamma_t \to 0}$  and  $\sigma_{t\bar{t}}^{NWA}$  from Melnikov/Schulze  $\hookrightarrow$  confirms  $\Gamma_t \to 0$  extrapolation
- size of top off-shell effects to integrated cross sections  $\sim 1\% \sim \Gamma_t/m_t \longrightarrow \text{corresponds to naive expectation}$





## top off-shell effects in the $p_{\mathrm{T,b\bar{b}}}$ distribution

 $\hookrightarrow\,$  relevant for background studies to  ${\rm WH}(\to\, b\bar{b})$  searches



- kinematical suppression for on-shell top's in LO:  $p_{T,b\bar{b}} < (m_t^2 M_W^2)/m_t \sim 135 \,\text{GeV}$
- cross section and K factor well described by NWA for  $p_{\rm T,b\bar{b}} \lesssim 150 \, {\rm GeV}$
- top off-shell effects reach 10-40% for  $p_{\rm T,b\bar{b}} \sim 200-400\,{\rm GeV}$

## top off-shell effects in the $M_{\rm e^+\,b}$ distribution



- kinematical edge for on-shell top's in LO:  $M_{\rm e^+\,b} < \sqrt{m_{\rm t}^2 M_{\rm W}^2} \sim 150\,{\rm GeV}$
- cross section and K factor well described by NWA for  $M_{\rm e^+b} \lesssim 150 \, {\rm GeV}$
- top off-shell effects reach some 10% for  $M_{\rm e^+b}\gtrsim 150\,{\rm GeV}$

#### **3.3 Comparison to other work**

Input tuned to Bevilacqua et al. [HELAC-NLO] arXiv:1012.4230 [hep-ph]

 $\hookrightarrow\,$  comparison of integrated cross sections:

| collider | energy             | $\sigma_{ m LO}[{ m fb}]$      | $\sigma_{ m LO}[{ m fb}]$ | $\sigma_{ m NLO}[{ m fb}]$             | $\sigma_{ m NLO}[{ m fb}]$ |  |
|----------|--------------------|--------------------------------|---------------------------|----------------------------------------|----------------------------|--|
|          |                    | HELAC-NLO                      | our result                | HELAC-NLO                              | our result                 |  |
| Tevatron | $1.96\mathrm{TeV}$ | 34.922(14)                     | 34.921(5)                 | 35.705(47)                             | 35.850(45)                 |  |
| LHC      | $7{ m TeV}$        | 550.54(18)                     | 550.29(7)                 | 808.46(98)                             | 806.0(1.0)                 |  |
| LHC      | $10{ m TeV}$       | 1394.72(75)                    | 1394.6(2)                 | 1993.3(2.5)                            | 1984.6(3.4)                |  |
|          |                    | $\Delta \sim 1 \sigma < 0.1\%$ |                           | $\Delta = 2\pi = 0.2 - 0.4\%$          |                            |  |
|          |                    | $\Delta \sim 1\sigma < 0.1\%$  |                           | $\Delta \sim 2\sigma \sim 0.3 - 0.4\%$ |                            |  |

## Good agreement

Loop results for single phase-space points:  $(m_t \text{ kept real})$ 

MadLoop and GoSam results mutually agree

→ Hirschi et al. arXiv:1103.0621 [hep-ph] and Cullen et al. arXiv:1111.2034 [hep-ph]

But: no contact yet made to HELAC-NLO and our work





## Conclusions





Stefan Dittmaier, NLO QCD corrections to  $p \, p \, / \, p \, ar p \, o \, W W b \, ar b$ 

## NLO QCD predictions for $pp/p\bar{p} \rightarrow WWb\bar{b} \rightarrow \nu_e e^+ \mu^- \bar{\nu}_\mu b\bar{b}$

- two calculations available and in agreement (DDKP and HELAC-NLO)
- top-quark off-shell effects
  - $\diamond \sim 1\%$  as long as top resonances dominate (e.g.  $\sigma_{
    m tot}$ )
  - $\diamond$  can rise to effects > 10% for off-shell top's (e.g. in  $M_{
    m e^+b}$ ,  $p_{
    m T,bar b}$  distributions)
    - $\hookrightarrow$  relevance for  $m_{\rm t}$  determination, some background studies, etc.
- W-boson off-shell effects
  - $\diamond$  suppressed (< 0.5%) as long as top resonances dominate
  - LO treatment should be sufficient also in off-shell tails
  - $\diamond$  to be included in  $\Gamma_{\rm t}$  as well

## Outlook / possible use of the new results

- further correction  $\sim 1\%$  to state-of-the-art prediction of  $\sigma_{t\bar{t}}$
- implementation into multi-purpose MC & parton-shower matching  $\hookrightarrow$  application in  $m_{\rm t}$  determinations
- further improvement by EW corrections



## **Backup slides**





Stefan Dittmaier, NLO QCD corrections to  $p\,p\,/\,p\,ar{p}\,
ightarrow\,W\,W\,b\,ar{b}$ 

## Treatment of intermediate resonances

## Top-quark resonances

- full off-shellness kept everywhere
  - $\hookrightarrow$  NLO accuracy in resonant and non-resonant regions
- complex-mass scheme Denner, S.D., Roth, Wieders '05

 $\,\,\hookrightarrow\,\,\mu_{
m t}^2=m_{
m t}^2-{
m i}m_{
m t}\Gamma_{
m t}=$  location of complex pole in propagator

• generic size of off-shell effects in  $\sigma_{
m tot}$ :  $\sim \Gamma_{
m t}/m_{
m t}~\lesssim~1\%$  (numerically confirmed)

## W-boson resonances

- leptonic W decays included
- W off-shell effects to "top-inclusive observables" doubly suppressed:  $\sigma_{b\bar{b}2\ell 2\nu} \sim \sigma_{t\bar{t}} \times (\Gamma_{t \to b\ell\nu}/\Gamma_t)^2 \leftarrow W$  off-shellness cancels in top BR's
- treatment of W off-shellness:
  - full off-shellness kept at LO and in real corrections (complex-mass scheme)
  - virtual corrections in "double-pole approximation" (=resonance expansion)
  - → NLO accuracy near W resonances, LO for far-off-shell W's
     But: concept applicable to electroweak corrections (otherwise proliferation of complexity)



#### Corrections due to real radiation



## Salient features:

- fast evaluation of amplitudes → spinor methods / MADGRAPH / OPENLOOPS Stelzer, Long Cascioli, Maierhoefer, Pozzorini '11
- multi-channel Monte Carlo integration over phase space



finite

#### finite

finite

• two alternative IR regularizations: dim. reg. / mass reg. (small  $m_{
m q}, m_{
m b}$ )





#### Setup – most relevant details

- two scale choices:  $(\mu = \mu_{\rm R} = \mu_{\rm F})$ fixed scale (FS):  $\mu_0 = m_{\rm t}$ dynamical scale (DS):  $\mu_{\rm dyn} = \sqrt{\sqrt{m_{\rm t}^2 + p_{{\rm T},{\rm t}}^2}} \sqrt{m_{\rm t}^2 + p_{{\rm T},{\rm t}}^2}$
- top-quark width: two different values with on- or off-shell W's Jezabek/Kühn '89

 $\hookrightarrow$  necessary to receive consistent (effective) branching ratios

W off shell: 
$$\Gamma_{t,LO} = 1.4655 \,\text{GeV}, \quad \Gamma_{t,NLO} = 1.3376 \,\text{GeV}$$
  
W on shell:  $\Gamma_{t,LO} = 1.4426 \,\text{GeV}, \quad \Gamma_{t,NLO} = 1.3167 \,\text{GeV}$  differ by 1.6%

• W/Z-boson widths: NLO QCD predictions everywhere (only leptonic W decays, no imbalance in BR's)

## • More details:

 $G_{\mu}$  scheme for EW couplings,  $m_{\rm b} = 0$ ,  $M_{\rm H} \to \infty$ , MSTW2008(N)LO PDFs,  $N_F = 5$ , anti- $k_{\rm T}$  algorithm with R = 0.4(0.5) for Tev.(LHC), cuts:  $p_{\rm T,b} > 20(30) \,{\rm GeV}, |\eta_{\rm b}| < 2.5, p_{\rm T,miss} > 25(20) \,{\rm GeV}, p_{\rm T,l} > 20 \,{\rm GeV}, |\eta_{\rm l}| < 2.5$ 





## Off-shell effects of the $\boldsymbol{W}$ bosons

Preliminary consideration

Cancellation of effects in  $\sigma$  and  $\Gamma_{\rm t}$  ("effective BR's")

 $\hookrightarrow$  double suppression  $\sim \frac{\Gamma_t}{m_t} \frac{\Gamma_W}{M_W} \times ... < 0.5\%$ effect hardly visible where top-quark resonances dominate

## Total cross section @ LHC with CM energy $8\,{\rm TeV}$

Denner, S.D., Kallweit, Pozzorini '12

| scale         | $\Gamma_{\mathbf{W}}$ | $\sigma_{ m LO}[{ m fb}]$       | $\sigma_{ m NLO}[{ m fb}]$   |
|---------------|-----------------------|---------------------------------|------------------------------|
| $\mathbf{FS}$ | narrow                | $1283.3(2)^{+43.1\%}_{-27.8\%}$ | $1219(3)^{-11.3\%}_{-3.0\%}$ |
| $\mathbf{FS}$ | finite                | $1278.1(2)^{+43.2\%}_{-27.8\%}$ | $1212(3)^{-11.4\%}_{-3.0\%}$ |
| DS            | narrow                | $1146.3(2)^{+41.1\%}_{-26.9\%}$ | $1225(3)^{-5.2\%}_{-5.3\%}$  |
| DS            | finite                | $1141.7(2)^{+41.1\%}_{-26.9\%}$ | $1218(2)^{-5.3\%}_{-5.3\%}$  |

 $\hookrightarrow$  W off-shell effect ~ 0.4% (decreasing with looser cuts) (similar at Tevatron and LHC @ 7 and 14 TeV)

Note:  $\Gamma_{\rm t}/m_{\rm t} = 0.8\%$ ,  $\Gamma_{\rm W}/M_{\rm W} = 3\%$ 

 $\hookrightarrow$  additional suppression beyond  $\Gamma_{\rm W}/M_{\rm W}$  confirmed !





## W off-shell effects in the $M_{\rm e^+b}$ distribution

K (FwW) $d\sigma/dM_{e^+,b}$  [fb/GeV]  $pp \rightarrow \nu_e e^+ \mu^- \bar{\nu}_\mu b\bar{b} + X @ \sqrt{s} = 8 \text{ TeV}$ 3 10  $\mathbf{2}$ 1 1 50100 1502000 NwW/FwW - 1 [%] 0.1(FwW) LO 0 NLO (FwW) -20 0.01 50100 15050100 200 0 1502000  $M_{\rm e^+b} \, [{\rm GeV}]$  $M_{\rm e^+b}$  [GeV]

W off-shell effect relevant (~ 10-20%) near on-shell edge at  $M_{\rm e^+b} \sim 150\,{\rm GeV}$ 





## W off-shell effects in the $p_{\mathrm{T,b}ar{\mathrm{b}}}$ distribution



W off-shell effects reach some % for  $p_{T,b\bar{b}} > 150 \,\text{GeV}$ .

Generic conclusion on  $\operatorname{W}$  off-shellness:

- < 0.5% where top resonances dominate
- LO inclusion generally sufficient

#### A typical (older) example with small Gram determinant:



## A typical (older) example with small Gram determinant:



#### A typical (older) example with small Gram determinant:

