Characterization of a single-produced resonance at the LHC: prospects for 2012 and beyond

S. Bolognesi^a, Y. Gao^c, A. Gritsan^a, K. Melnikov^a, M. Schulze^b, N. Tran^c, A. Whitbeck^a Johns Hopkins University^a, Argonne National Laboratory^b, Fermi National Laboratory^c

> PHENO Workshop May 7, 2012

Status of LHC

- ► 2011 A spectacular year for LHC
 - ATLAS/CMS analyzed 5/fb each!
 - ▶ hint @ 125 GeV
- ▶ Hopes for 2012:
- 5 σ discovery
- Measuring properties mass,width - $ZZ,\gamma\gamma$ branching fractions - bb, $\tau\tau$ couplings - ZZ

Kinematics of Decay

- ▶ Kinematics of final state fermions can be separated into three sets of variables:
 - $m_Z, m_{Z^{(*)}}, m_{4l}$
 - $\bullet \ \cos\theta^*, \Phi_1, \cos\theta_1, \cos\theta_2, \Phi$
 - P_T^X, Y^X (PDF/NLO QCD)
- ▶ $\cos \theta^*$, Φ_1 are related to production of the Z's (production angles)
- $\cos \theta_1$, $\cos \theta_2$, Φ are related to Z decays (helicity angles)

Amplitude for $X \rightarrow VV$

 For scalar resonance decaying into 2 vector bosons, most general amplitude:

$$A(X \to V_1 V_2) = \begin{bmatrix} v^{-1} \epsilon_1^{*\mu} \epsilon_2^{*\nu} (a_1 g_{\mu\nu} M_X^2] + a_2 q_{1\mu} q_{2\nu} + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \\ \text{SM Higgs} \to \text{ZZ,WW:} \\ a_1 \neq 0, a_2 \sim O(10^{-2}), a_3 \sim O(10^{-11}) \\ \text{SM Higgs} \to \gamma\gamma; \ a_1 = -a_2/2 \neq 0 \\ \text{BSM pseudo-scalar Higgs} \ a_3 \neq 0 \\ \end{bmatrix} + a_2 q_{1\mu} q_{2\nu} + a_3 \epsilon_{\mu\nu\alpha\beta} q_1^{\alpha} q_2^{\beta} \\ A_{00} = -\frac{m_X^4}{v} (a_1 x + a_2 \frac{M_Z M_*}{M_X^2} (x^2 - 1)), \\ A_{\pm\pm} = \frac{m_X^2}{v} (a_1 \pm ia_3 \frac{M_Z M_*}{M_H^2} \sqrt{x^2 - 1}) \\ x = \frac{M_H^2 - M_Z^2 - M_*^2}{2M_Z M_M}$$

Angular Distribution $(J_X = 0)$ $d\Gamma(\theta^*, \Phi_1, \theta_1, \theta_2, \Phi) \propto 4(1 - f_{++} - f_{--})\sin^2\theta_1 \sin^2\theta_2$ $+(f_{++} + f_{--})((1 + \cos^2\theta_1)(1 + \cos^2\theta_2) + 4R_1R_2\cos\theta_1\cos\theta_2)$ $-2(f_{++} - f_{--})(R_1\cos\theta_1(1 + \cos^2\theta_2) + R_2(1 + \cos^2\theta_1)\cos\theta_2)$ $+4\sqrt{f_{++}(1 - f_{++} - f_{--})(R_1 - \cos\theta_1)\sin\theta_1(R_2 - \cos\theta_2)\sin\theta_2\cos(\Phi + \phi_{++})}$ $+4\sqrt{f_{--}(1 - f_{++} - f_{--})(R_1 + \cos\theta_1)\sin\theta_1(R_2 + \cos\theta_2)\sin\theta_2\cos(\Phi - \phi_{--})}$ $+2\sqrt{f_{++}f_{--}}\sin^2\theta_1\sin^2\theta_2\cos(2\Phi + \phi_{++} - \phi_{--})$

$$f_{ij} = |A_{ij}|^2, \ \phi_{ij} = \arg(A_{ij}/A_{00}), \ R_{1,2} = \frac{2c_A/c_V}{1 + c_A^2/c_V^2} (=.15 \text{ for leptons})$$

- Flat distribution of production angles, $\cos \theta^*$, Φ_1 (background & J > 0 have non-trivial distributions)
- ▶ Same machinery can be applied to J=1,2
 - ▶ Additional parameters, $f_{z1,z2}$, determining X polarization

Angular Distribution $(J_X > 0)$

Discriminating Background

signal background

Below ZZ threshold m_{Z^*} becomes strong discriminant Shape of m_{Z^*} also depends on helicity amplitudes

7/19

MELA (Matrix Element Likelihood Approach)

Compress 8D PDFs down to 2D:

$$\mathcal{D}(m_1, m_2, \vec{\Omega} | m_{4l}) = \left(1 + \frac{\mathcal{P}_{bkg}(m_1, m_2, \vec{\Omega} | m_{4l})}{\mathcal{P}_{0^+}(m_1, m_2, \vec{\Omega} | m_{4l})}\right)^-$$

(signal vs background)

- $\blacktriangleright \quad \text{Use MC to describe shape of } \mathcal{D}$
 - Applying CMS-like detector effects

MELA - signal separation

Signal hypothesis separation

Signal hypothesis separation

$$\mathcal{D}(m_1, m_2, \vec{\Omega} | m_{4l}) = \left(1 + \frac{\mathcal{P}_{0^-}(m_1, m_2, \vec{\Omega} | m_{4l})}{\mathcal{P}_{0^+}(m_1, m_2, \vec{\Omega} | m_{4l})}\right)^{-1}$$
5000

 $(0^++bkg vs 0^-+bkg)$

- using MELA to separate signal $(0^+ vs 0^-)$ yields $\sim 20/\text{fb} @ \sqrt{s} = 8\text{TeV}$
- Neyman-Pearson hypothesis testing

 $2ln(\mathcal{L}_0/\mathcal{L}_1)$

• at 125 GeV, significance $\sim 2\sigma$

background

pseudo scalar

5000

120

125

Toys

Conclusions and Outlook

- Developed a formalism for characterizing new resonances in terms of spin, CP, and couplings in ZZ decay channel
 - \blacktriangleright Additional kinematic information increases sensitivity to signal by $\sim 15\%$
 - near future: hypothesis separation at 3σ discovery, can separate $0^+/0^-$ at 2σ
 - ▶ long term: 8D likelihood to fit for helicity amplitudes
- Working to include more signal hypothesis and other decay channels

BACKUP

Angular Distributions $(ZZ \rightarrow 2l2j)$

Helicity Likelihood Discriminant $(ZZ \rightarrow 2l2j)$

Putting it all together...

[‡] For more details, see twiki/PAS here https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsHIG

 $\sqrt{s} = 7 \text{ TeV}$

Background Parameterization

- ▶ 41 final state: SM ZZ production is the major background
- ► Use MC, fit helicity amplitudes to $q\bar{q} \rightarrow ZZ \rightarrow 4l$, $gg \rightarrow ZZ \rightarrow 4l$
- Using helicity amplitudes as basis for fits can recover correlations in background

- Example of helicity amplitude fit to SM ZZ events near 250 GeV
- Can use to measure fraction of gg vs $q\bar{q}$ initiated events in data

parameter	$q\bar{q} \rightarrow ZZ$	$gg \rightarrow ZZ$
f_{00}	0.025	0.398
f_{++}	0.206	0.430
$f_{}$	0.005	0.012
$f_{\pm 0}$	0.007	0.047
f_{0-}	0.147	0.007
f_{+-}	0.228	0.026

Separating Signal Hypotheses $(ZZ \rightarrow 4l)$

mass	discovery sgn	separation sgn
120	2.8σ	1.6σ
125	4.3σ	2.1σ
130	5.8σ	2.7σ
140	8.8σ	3.8σ

Separating Signal Hypotheses $(ZZ \rightarrow 4l)$

- ▶ Using 5D likelihood for a given model (SM Higgs, pseudo-scalar, RS graviton, SM ZZ...)
 - evaluate $-2ln(L_1/L_2)$ for data and two choice models (e.g. SM Higgs, pseudo-scalar)
 - ▶ using MC pseudo-experiments, separation significance can be calculated
- ▶ Example: resonance with

 $m = 250, n_{sig} = 30, n_{bkg} = 24 (\sim 5 f b^{-1} @ \sqrt{s} = 14 T eV)$ model 1: $J^P = 0^+$, model 2: $J^P = 0^-$ (A) model 1: $J^P = 0^+$, model 2: $J^P = 2_m^+$ (B)

Separating Signal Hypotheses $(ZZ \rightarrow 4l)$ contd

 Separation significance, S, has been calculated for a number of hypothetical models (S - # of widths between peaks)

▶ all using a resonace of 250 GeV,
$$n_{sig} = 30, n_{bkg} = 24 \,(\sim 5 \, f b^{-1} @ \sqrt{s} = 14 \, TeV)$$

	0-	1^{+}	1-	2_m^+	2_L^+	2^{-}
0^{+}	4.1	2.3	2.6	2.8	2.6	3.3
0^{-}		3.1	3.0	2.4	4.8	2.9
1^{+}			2.2	2.6	3.6	2.9
1^{-}				1.8	3.8	3.4
2_{m}^{+}					3.8	3.2
2_L^+						4.3

• Most values are $\gtrsim 3$ and almost all are > 2

Measuring Helicity Amplitudes

- floating $\vec{\xi}$ one could use the ML to measure helicity amplitudes of a given spin hypothesis
- Example study:
 - for $ZZ \to 4l$ final state
 - ▶ $n_{sig} = 150, n_{bkg} = 120 (\sim 25 \, fb^{-1} @ \sqrt{s} = 14 \, TeV)$
 - Generate MC for J^p = 0⁺, 0⁻ resonance at 250 GeV (A),
 (B)

(A)	generated	$m_X = 250 \text{ GeV}$ without detector	with detec	150					····
nsig	150	150 ± 13	153 ± 15	F		. † .∑.			-
$(f_{++} + f_{})$	0.208	0.21 ± 0.07	0.23 ± 0.(월	2		- 🖊 🔪	•		1
$(f_{++} - f_{})$	0.000	0.01 ± 0.13	0.01 ± 0.1 @	100		/ 🕌	\		-
$(\phi_{++} + \phi_{})$	2π	6.30 ± 1.46	6.39 ± 1.8 Ξ	-		κ'	1		-
$(\phi_{++} - \phi_{})$	0	0.00 ± 1.06	0.01 ± 1.(50	. 🖌	π	<u>\</u>		-
(B)	generated	$m_X = 250 \text{ GeV}$ without detector	with detec						
nsig	150	150 ± 13	151 ± 15	0	0.1	0.2	0.3	0.4	0.5
$(f_{++} + f_{})$	1.000	1.00 ± 0.05	1.00 ± 0.0			f++	+ + f		
$(f_{++} - f_{})$	0.000	0.00 ± 0.35	0.00 ± 0.40						
$(\phi_{++} + \phi_{})$	N/A	free	free						
$(\phi_{++} - \phi_{})$	π	3.15 ± 0.31	3.14 ± 0.41						

Generator Description

► JHU generator can produce resonances with the following decay topologies:

 $q\bar{q}, gg \to X \to ZZ \to 4l, 2l2q, 2l2\nu$

 $q\bar{q},gg \rightarrow X \rightarrow WW \rightarrow l\nu qq,2l2\nu,l\nu\tau\nu$

$$q\bar{q} \to X \to \gamma\gamma$$

- Proper angular correlations are computed
- ▶ Resonances can be spin 0,1,2 with arbitrary couplings
- ▶ Output is a standard LHE file (i.e. can be interfaced with Pythia)
- Code and further documentation can be found here: http://www.pha.jhu.edu/spin/