Left-right models and flavor patterns

Monika Blanke

Cornell University

Phenomenology 2012 Symposium University of Pittsburgh May 7-9, 2012 Different values for CKM element $|V_{ub}|$ from different channels:

$$|V_{ub}|_{B \to \pi \ell \nu} = 3.38(36) \cdot 10^{-3}$$

$$|V_{ub}|_{B \to X_u \ell \nu} = 4.27(38) \cdot 10^{-3}$$

$$|V_{ub}|_{B^+ \to \tau \nu} = 4.70(56) \cdot 10^{-3}$$

right-handed charged currents can resolve tension

Crivellin (2009) Buras, Gemmler, Isidori (2010)

> Does this solution hold in a concrete left-right model?

Basics of a general left-rght model

• based on the gauge group (gauge couplings g_s, g_L, g_R, g')

 $SU(3)_C \times SU(2)_L \times SU(2)_R \times U(1)_{B-L}$

- $\bullet\,$ new heavy gauge bosons $W',\,Z'$ and new heavy charged and neutral Higgs particles
- quark flavor mixing matrices $V^L = V_{CKM}$ and V^R describing leftand right-handed charged current interactions

Already

- known for almost 40 years
- studied extensively by many authors starting from scenarios with exact LR symmetry up to more general frameworks

PATI, SALAM, MOHAPATRA, SENJANOVIC... (1974-2011)

> So what is new here?

MB, BURAS, GEMMLER, HEIDSIECK, JHEP 03 (2012) 024

Simultaneous analysis of the most important electroweak precision and flavor constraints on a general left-right model

Electroweak precision and collider constraints

full fit of $\sim 40~{\rm EWP}$ observables

Our strategy:

 \triangleright

- apply the results of Hsieh et al.
 & perform χ² fit for the most constraining observables
- identify a set of EW benchmark parameters in the best fit region

HSIEH, SCHMITZ, YU, YUAN (2010)

 $M_{W'} = 2.6 \text{ TeV}$ in agreement with present collider bounds $M_H \simeq 16 \text{ TeV}$ on the edge of perturbativity

New LR contributions to meson-antimeson mixing

dominant NP contribution to mixing amplitude

$$(M_{12}^q)_{\mathsf{LR}} \sim \sum_{i,j=u,c,t} \left[\lambda_i^{\mathsf{LR}}(q) \lambda_j^{\mathsf{RL}}(q) \right]^* R_{ij}(q) \qquad (q=K,d,s)$$

 $\begin{array}{ll} \lambda_i^{\mathsf{LR},\mathsf{RL}}(q) & \quad \text{relevant combination of } V^L \text{ and } V^R \text{ elements} \\ R_{ij}(q) & \quad \text{loop integral } / \text{ tree level propagator } + \text{QCD effects} \end{array}$

Relative size of neutral Higgs contribution

- Higgs contribution dominant even for $M_H \sim 20 \text{ TeV}$
- increases further with increasing s (Higgs sector parameter)

Bound on the heavy Higgs mass

Allowed ranges for ${\cal V}^{\cal R}$

 V^R parameter space consistent with tree level and $\Delta F = 2$ constraints:

Allowed ranges for V^R

 V^R parameter space consistent with tree level and $\Delta F=2$ constraints:

Relative size of effects in K, B_d and B_s systems

 $\lambda_t^{\mathrm{RR}}(q)/\lambda_t^{\mathrm{LL}}(q)$: relative size of LR effects in $q=K,B_d,B_s$ decays

largest effect in K physics, but associated to large fine tuning in ε_K

 $B \to X_{s,d} \gamma$ constraints relevant for s > 0.5 due to enhancement of charged Higgs contribution

Revisiting the $|V_{ub}|$ problem

Recall: inconsistency in $|V_{ub}|$ determinations > solution requires RH contribution $sc\epsilon^2 |V_{ub}^R| \sim 6 \cdot 10^{-4}$

 $\Delta F = 2$ constraints preclude solution of $|V_{ub}|$ problem in particular if low fine tuning is required

LR model confronting flavor data:

• strong constraints from meson antimeson mixing, in particular ε_K

• dominated by tree level Higgs exchange

• very hierarchical structure for V^R required

- LR model can be made consistent with electroweak precision and flavor constraints for low W' masses well in the reach of the LHC
- $\left|V_{ub}\right|$ problem cannot be solved

Backup slides

• fermion representations

$$Q_L = \begin{pmatrix} u_L \\ d_L \end{pmatrix} \sim \begin{pmatrix} 3, 2, 1, \frac{1}{3} \end{pmatrix} \qquad Q_R = \begin{pmatrix} u_R \\ d_R \end{pmatrix} \sim \begin{pmatrix} 3, 1, 2, \frac{1}{3} \end{pmatrix}$$
$$L_L = \begin{pmatrix} \nu_L \\ l_L \end{pmatrix} \sim (1, 2, 1, -1) \qquad L_R = \begin{pmatrix} \nu_R \\ l_R \end{pmatrix} \sim (1, 1, 2, -1)$$

extended Higgs sector

$$\phi \sim (1, 2, 2, 0) \qquad \Delta_R \sim (1, 1, 3, 2) \qquad \Delta_L \sim (1, 3, 1, 2)$$

electroweak symmetry breaking in two steps

$$\begin{array}{l} \label{eq:alpha} \displaystyle \textcircled{1} \ \langle \Delta_R \rangle = \begin{pmatrix} 0 & 0 \\ \kappa_R & 0 \end{pmatrix} \text{ breaks } SU(2)_R \times U(1)_{B-L} \to U(1)_Y \\ \displaystyle \textcircled{2} \ \langle \phi \rangle = \begin{pmatrix} cv & 0 \\ 0 & sv \end{pmatrix} \text{ breaks } SU(2)_L \times U(1)_Y \to U(1)_Q \\ \text{ here } \epsilon = v/\kappa_R \ll 1 \end{array}$$

New flavor violating interactions in the LR model

• quark masses generated by Yukawa couplings

$$\mathcal{L}_{\mathsf{Yuk}} = -y_{ij}\overline{Q}_{Li}\phi Q_{Rj} - \tilde{y}_{ij}\overline{Q}_{Li}\tilde{\phi}Q_{Rj} + \text{h.c.}$$

flavor changing heavy neutral Higgs couplings
 charged Higgs contributes to FCNCs at the loop level

• right-handed charged currents mediated by W^{\pm} and ${W'}^{\pm}$

$$\bar{u}_R^i d_R^j W^+ \propto \frac{sc\epsilon^2}{ij} V_{ij}^R \qquad \bar{u}_R^i d_R^j W'^+ \propto V_{ij}^R$$

new right-handed mixing matrix V^R in addition to CKM matrix
 ➤ three new mixing angles and six complex phases

On explicit parity (or charge conjugation symmetry)

 most studies assume explicit parity or charge conjugation symmetry at the TeV scale

$$\succ g_L = g_R$$
$$\Rightarrow |V_{ij}^R| = |V_{ij}^L|$$

- very predictive framework for flavor phenomenology
 - > $M_{W'} > 4 \text{ TeV}$ from $K \bar{K}$ mixing
 - \succ $|V_{ub}|$ problem cannot be solved

> We do **not** assume a discrete LR symmetry!

- lower mass scales possible
- much richer flavor phenomenology (arbitrary V^R)

Collider constraints on the LR model

• W' searches in lepton+MET

 $M_{W'} > 2.5 \,\mathrm{TeV}$ — only applies if ν_R escapes detection

• combined W' and heavy ν_R search • $W' \rightarrow \ell \nu_R \rightarrow \ell \ell j j$ • 2D exclusion contour $M_{W'} > 2.2 \text{ TeV}$ for wide range of M_{ν_R}

• for $M_{\nu_R} > M_{W'}$, W' decays dominantly to quarks > dijet resonance search: $M_{W'} > 1.5 \text{ TeV}$

More details on the EWP fit

benchmark parameters for our flavor analysis:

$$\epsilon = 0.03$$
 $g_R/g_L = 0.7$ $0.1 < s < 0.6$ $M_H = 16 \,{\rm TeV}/\sqrt{1-2s^2}$

More details on the EWP fit

benchmark parameters for our flavor analysis:

$$\epsilon = 0.03$$
 $g_R/g_L = 0.7$ $0.1 < s < 0.6$ $M_H = 16 \,{\rm TeV}/\sqrt{1-2s^2}$

Tree level constraints on flavor mixing

different transition measure different combinations of V_{ij}^L and V_{ij}^R $|V_{ij}|_V \equiv |V_{ij}^L + sc\epsilon^2 V_{ij}^R| \qquad |V_{ij}|_A \equiv |V_{ij}^L - sc\epsilon^2 V_{ij}^R|$

transition	considered decay	<i>V_{ij}</i>	<i>V_{ij}</i> _{<i>V</i>}	$ V_{ij} _A$
$u \rightarrow d$	superallowed $0^+ \rightarrow 0^+$	-	0.97425(22)	-
	$\pi^+ \to \mu^+ \nu$	-	-	0.981(13)
$U \rightarrow S$	$K ightarrow \pi \ell u$	-	0.2257(12)	-
	$K ightarrow \mu u$	-	-	0.2268(32)
$c \rightarrow d$	$D ightarrow K \ell u$ and $D ightarrow \pi \ell u$	-	0.229(25)	-
	νN charm production	-	-	0.230(11)
$c \rightarrow s$	semileptonic D decays	-	0.98(10)	-
	$D_s ightarrow au^+ u$	-	-	0.978(31)
$b \rightarrow u$	$B \to X_U \ell \nu$	4.27(38) · 10 ⁻³	-	-
	$B ightarrow \pi \ell u$	-	$3.38(36) \cdot 10^{-3}$	-
	B ightarrow au u	-	-	4.70(56) · 10 ⁻³
$b \rightarrow c$	$B \to X_c \ell \nu_\ell$	41.54(73) · 10 ⁻³	-	-
	$B ightarrow D\ell u$	-	$39.4(17) \cdot 10^{-3}$	-
	$B ightarrow D^* \ell u$	-	-	39.70(92) · 10 ⁻³
$t \rightarrow b$	$Br(t \rightarrow bW)/Br(t \rightarrow qW)$	0.95(5)	-	-

Particle antiparticle mixing — the main actors

mediated by box diagrams in the Standard Model

- characterized by mass differences ΔM_K , $\Delta M_{d,s}$ (CP conserving)
- CP violating observables

 $K - \bar{K}$: ε_K (indirect CP violation in $K \to \pi\pi$ decays) $B_d - \bar{B}_d$: time dependent CP asymmetry $S_{\psi K_S}$ in $B_d \to J/\psi K_S$ $B_s - \bar{B}_s$: time dependent CP asymmetry $S_{\psi\phi}$ in $B_s \to J/\psi\phi$

+ semileptonic asymmetries $A_{SL}^{d,s}$ (> dimuon charge asymmetry)

Fine tuning measure

• Barbieri-Giudice measure of fine tuning

$$\Delta_{\mathsf{BG}}(O) = \max_{i} \left| \frac{p_i}{O} \frac{\partial O}{\partial p_i} \right|$$

measures sensitivity of observable O to small variations in paramteres p_i

modified Barbieri-Giudice measure

$$\Delta_{\mathsf{BG}}^{\mathsf{mod}} = \sum_{j=1}^{N_{\mathsf{Obs}}} \Delta_{\mathsf{BG}}(O_j)$$

Omitting Higgs contributions

Allowed ranges for $V^R - s$ dependence

Charged Higgs contribution to $B \rightarrow X_s \gamma$

Charged Higgs contribution to $B \rightarrow X_s \gamma$

