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Baryon asymmetry & dark matter

✤ Two issues that particle physics SM cannot answer for cosmology:

✤ Dark matter candidate.

✤ Origin of baryon asymmetry of the universe.

✤ Connections between dark matter and baryon relic densities?

✤ After/during baryogenesis, dark matter shares part of the asymmetry -- 
generally use B or L violating processes beyond SM.

✤ Dark matter plays role in generating the baryon asymmetry.



Electroweak baryogenesis

✤ Baryon number in the SM is known able to be violated efficiently at 
high temperature.

✤ SM fails for two reasons: no strong first-order phase transition & no 
enough CP violation -- mainly focus on phase transition in this talk.

✤ Strong first-order PhT calls for                 (suppress sphalerons inside 
the bubble). Thermal cubic from boson loops. SM: gauge bosons 
couple to Higgs too weakly.

✤ New scalars with sizable coupling to Higgs (like stop in MSSM).
✤ Can (one of) these scalars be dark matter candidate?

‘t Hooft, 76’; Klinkhamer, Manton, 84’;
Kuzmin, Rubakov, Shaposhnikov, 85’
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DM from an inert scalar doublet

❖ Two Higgs doublet (H, D) model with Z2 symmetry.

❖ Original motivations from little hierarchy problem, mirror fermions.

❖ Only one doublet H (Z2 even) gets VEV, breaks EW symmetry; The 
second doublet  (Z2 odd) does not couple to fermions -- inert.

❖ Spectrum:

❖ Precision test: 

Deshpande, Ma, 78’; Barbieri, Hall, Rychkov hep-ph/0603188
Melfo, Nemevsek, Nesti, Senjanovic, YZ, 1105.4611
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Relic density and direct detection
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❖ Thermal freeze out 

❖ Annihilate either through 
gauge interaction or via SM 
Higgs exchange.

❖ Destructive interference 
possible.



Relic density and direct detection
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Constraints from Xenon 100

Melfo, Nemevsek, Nesti, Senjanovic, YZ,  1105.4611

❖ DM mass:                    GeV, up to uncertainties in strange form factor and 
local dark matter density.
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❖ Lighter thermal singlet S (<~50 GeV) excluded by Xenon, and LEP (due to 
Z*SS production) and recently invisible Higgs decay. 

❖ Indirect detection through gamma-ray line enhanced by W-loop.
M. Gustafsson, E. Lundstrom, L. Bergstrom, J. Edsjo, astro-ph/0703512

mh/2− 76
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via tail of Boltzmann 
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EW phase transition

✤ Effective potential at high T:

✤ Strong first order phase transition,              suppress sphaleron 
inside bubble.

✤ Cubic term is crucial. SM case: 

✤ Require the Higgs be lighter than 50 GeV.  

✤ Higgs potential at finite T

✤ List of bosons:                  ; inert components                .
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Phase transition w. inert doublet

✤  With an inert doublet, term proportional to T

✤ Thermal mass not purely from Higgs vev (like MSSM stop)

✤ Non-zero first term tends to weaken the strength of phase 
transition 

✤ Need to minimize -- upper bound on       .
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Connection to direct detection

✤ S, A, C masses share the same      , whose upper bound means 
lower bound on       .

✤ DM mass:                                                            (relic density)

T. Chowdhury, M. Nemevsek, G. Senjanovic, YZ (arXiv:1110.5334)

Recall : V ∼ λSSS(h+ v)2

✤ Thus strong phase transition implies a lower bound on direct 
detection cross section.

✤ Direct detection:
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❖ More correlations: 



Constraints on the model

Constraints on the spectrum: 
✤ A, C masses between 270-350 GeV (nearly degenerate); 
✤ DM S mass mh/2-76 GeV, and small self interaction;
✤ SM Higgs mass must be <130 GeV.

T. Chowdhury, M. Nemevsek, G. Senjanovic, YZ, JCAP, 1110.5334
D. Borah, J.M. Cline, 1204.4722



Unique representation(s)

✤ Why not scalar singlet: direct detection wants its coupling to Higgs small, 
but phase transition wants it large.

✤ Can be done with a complex singlet -- essentially two real singlets -- less 
correlation between direct detection and phase transition?

✤ Higher representation?

✤ Integer weak-isospin: cannot accommodate light DM (end up >TeV).

✤ Half integer weak-isospin, allow light DM, but larger gauge contribution to 
thermal mass -- too weak phase transition (even for quadruplet).

Barger, Langacker, McCaskey, Ramsey-Musolf, Shaughnessy, 0811.0393

Cirelli, Fornengo, Strumia, hep-ph/0512090



Conclusions

✤ Dark matter could play important role in EW baryogenesis.

✤ We work with inert scalar doublet dark matter example -- a unique 
candidate.

✤ Strong phase transition implies a lower bound on direct detection 
cross section.

✤ Interplay with relic density - tightly constraint  the spectrum - SM 
Higgs must be lighter than 130 GeV - new states testable at the LHC.

✤ Not a complete picture yet - new sources of CP violation needed, 
towards the symmetric dark matter - asymmetric baryon connection.
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Thank you!


