A Model Independent Analysis of Dark Matter Direct Detections

Yiming Xu Boston University

PHENO 2012

w/A.L.Fitzpatrick,W.Haxton, E.Katz, N.Lubbers arXiv: 1203.3542, and work in progress

Outline

• The effective field theory of DM direct detections

Relativistic Interactions \rightarrow Non-rel Operators \rightarrow Nuclear Responses (e.g. $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}i\sigma_{\mu\alpha}q^{\alpha}N$) (e.g. $i\vec{S}_{\chi}\cdot(\vec{S}_{N}\times\vec{q})$) $_{f}\langle\chi,Nucleus|\mathcal{O}_{i}|\chi,Nucleus\rangle_{i}$

- Results of the model independent searches
 - How important are interferences of non-rel effective operators?
 - Are current DM experiments complementary?

Standard WIMP Interactions in Direct Detections vs New Models

SI interaction $\bar{\chi}\chi\bar{N}N$

SD interaction $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}\gamma_{\mu}\gamma^{5}N$

Standard WIMP Interactions in Direct Detections vs New Models

SI interaction $\bar{\chi}\chi\bar{N}N$

SD interaction $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}\gamma_{\mu}\gamma^{5}N$

Isospin-dependent DM [1102.4331], Form factor DM [0908.3192, 0908,2991], Inelastic DM [hep-ph/0101138], Dark moment interactions [1007.4200, 1007.5325, 1203.6652],...

EFT of Direct Detections

Leading non-rel operators of DM-SM interactions

[1008.1591, Fan, Reese, Wang]

Relativistic operators \rightarrow Non-relativistic operators

Why the next leading order $(in q^2)$?

Magnetic dipole interaction [1007.4200,1007.5325]: $\mathcal{L} \supset g'Q'r\bar{\chi}\sigma^{\mu\nu}\chi F'_{\mu\nu} + \epsilon F_{\mu\nu}F^{'\mu\nu} \longrightarrow eg'\epsilon Q'r\bar{\chi}\sigma^{\mu\nu}q_{\nu}\chi\bar{N}\gamma_{\mu}N/m_{A}^{2}$

DM - Nucleus interactions \longrightarrow Nuclear Responses

EFT of Direct Detections

$$\mathcal{L}_{\text{int}} = \sum_{N=n,p} \sum_{i} c_i^{(N)} \mathcal{O}_i \chi^+ \chi^- N^+ N^-$$

Galilean-invariant, Hermitian quantities:

 $i\vec{q}$ (transfer momentum) $\vec{S_{\chi}}$ (DM spin) $\vec{v}^{\perp} \equiv \frac{1}{2}(\vec{v}_{\chi,in} + \vec{v}_{\chi,out} - \vec{v}_{N,in} - \vec{v}_{N,out}) \qquad \vec{S_N} \quad \text{(nucleon spin)}$ Non-relativistic operators \mathcal{O}_i $\mathcal{O}_1, \mathcal{O}_2, \mathcal{O}_3:$ **1**, $(v^{\perp})^2, \quad i\vec{S}_N \cdot (\vec{q} \times \vec{v}^{\perp})$ $\mathcal{O}_4, \mathcal{O}_5, \mathcal{O}_6: \qquad \vec{S}_{\gamma} \cdot \vec{S}_N, \quad i \vec{S}_{\gamma} \cdot (\vec{q} \times \vec{v}^{\perp}), \quad (\vec{S}_{\gamma} \cdot \vec{q}) (\vec{S}_N \cdot \vec{q})$ $\vec{S}_N \cdot \vec{v}^{\perp}$, \mathcal{O}_7 : $\vec{S}_{\gamma} \cdot \vec{v}^{\perp}, \quad i \vec{S}_{\gamma} \cdot (\vec{S}_N \times \vec{q})$ $\mathcal{O}_8, \mathcal{O}_9:$ $i\vec{S}_N\cdot\vec{q},$ O_{10} : $i\vec{S}_{\chi}\cdot\vec{q}.$ O_{11} :

EFT of Direct Detections Nuclear Responses Non-rel operators $_{f}\langle \chi, Nucleus | \mathcal{O}_{i} | \chi, Nucleus \rangle_{i}$ 5 nuclear response operators 1. SI $\langle f | \vec{q} \cdot \vec{S}_N | i \rangle$ 2. Longitudinal SD SD $\langle f | \vec{q} \times \vec{S}_N | i \rangle$ 3. Transverse SD $\langle f | \vec{L}_N | i \rangle$ [1007.4200, Chang, Weiner, Yavin] 4. Angular momentum $\langle f | (\vec{L} \cdot \vec{S})_N | i \rangle$ 5. Angular momentum - spin coupling (New operator, interferes with SI)

EFT of Direct Detections

... in particular, for $(\vec{L} \cdot \vec{S})_N$, there is an $l_{highest}^2$ enhancement. $l = \frac{n_+}{l - \frac{1}{2}} \quad \vec{l} \cdot \vec{s} \sim -(l+1)/2 \qquad \Delta n_{\pm} \sim l$ $l = \frac{n_-}{l + \frac{1}{2}} \quad \vec{l} \cdot \vec{s} \sim l/2 \qquad (\vec{L} \cdot \vec{S})_N \sim l_{highest}^2$

At low DM mass :

Understanding nuclear targets in probing the larger parameter space

Xe, Ge, F, Na, I, (W, Si, O, ...)

of constraining directions

of nuclear orbitals with non-zero S matrix of these operators

Understanding nuclear targets in probing the larger parameter space

Xe, Ge, F, Na, I, (W, Si, O, ...)

of constraining directions

of nuclear orbitals with non-zero S matrix of these operators

Flat directions for small-spin targets at low energy

Constraints on Non-rel Operators

SI operator and $(\vec{L} \cdot \vec{S})_N$ -- Release of constraint by O(10)

with
$$c^2 \equiv \sum_N (c_i^{(N)})^2$$
 $P^\mu \bar{\chi} \chi \bar{N} i \sigma_{\mu\alpha} q^\alpha N \rightarrow 4m_\chi^2 q^2 \mathcal{O}_1 + 16m_N m_\chi^2 \mathcal{O}_3$

Constraints on Non-rel Operators

 \vec{L}_N and \vec{S}_N

$$\bar{\chi}\gamma^{\mu}\gamma^{5}\chi K_{\mu}\bar{N}N \longrightarrow 16m_{N}^{2}m_{\chi}\mathcal{O}_{8}$$

 $\bar{\chi}\gamma^{\mu}\gamma^{5}\chi\bar{N}i\sigma_{\mu\alpha}q^{\alpha}N \rightarrow 16m_{\chi}m_{N}\mathcal{O}_{9}$

Are direct detections complementary in probing new operators

Are direct detections complementary in probing new operators

Conclusions

- An EFT of DM direct detections
- New non-relativistic interaction $(\vec{L} \cdot \vec{S})_N$
- Release of constraint coming from interference in $(1, (\vec{L} \cdot \vec{S})_N)$ sector
- Nuclear targets have orthogonal sensitivity.

Conclusions

- An EFT of DM direct detections
- New non-relativistic interaction $(\vec{L} \cdot \vec{S})_N$
- Release of constraint coming from interference in $(1, (\vec{L} \cdot \vec{S})_N)$ sector
- Nuclear targets have orthogonal sensitivity.

Thanks!