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Outline

• The effective field theory of DM direct detections

Relativistic Interactions      Non-rel Operators      Nuclear Responses

• Results of the model independent searches

•How important are interferences of non-rel effective operators?

•Are current DM experiments complementary?
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NmχO11

P µχ̄γ5χN̄iσµαqαN (4mχ)(q · Sχ)(q2 − 4mN iv⊥ · (q × SN)) 4mχO11(q2 + 4mNO3)
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Many combinations have not been included since they are equivalent by the equations of
motion, and the above terms tend to give simpler non-relativistic pieces. The most commonly
used such combination is the vector interaction γµ, which can be written in terms of the above
by using the Gordon identity:

N̄γµN =
1

2mN
N̄ (Kµ − iσµνqν)N. (97)

Note that every non-relativistic operator occurs in the above table, except for O2, which
appear if there are cancellations in the leading pieces, for instance through the linear combi-
nation (4mNmχχ̄χN̄N − P µχ̄χKµN̄N).

D Single-particle Operators

Four of the six operators introduced in section 3 are familiar from standard treatments of
semi-leptonic electroweak interactions [17, 18], MJM(q�x), ∆JM(q�x), Σ�

JM(q�x), and Σ��
JM(q�x).

The matrix elements of these operators between single-particle harmonic oscillator states, the
most common basis for nuclear physics calculations, can be evaluated analytically, yielding
explicit forms for the nuclear form factors governing DM scattering. A Mathematica script
[25] and tables [18] are available. The remaining two operators are a symmetrized form of Φ�

JM

and Φ��
JM , operators originally introduced by Serot [19] in his treatment of 1/M2 corrections

48

(e.g.                           )  (e.g.                      )  i�Sχ · (�SN × �q) f �χ, Nucleus|Oi|χ, Nucleus�i
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Fig. 12. (Color online) Light yield distribution of the accepted

events, together with the expected contributions of the back-

grounds and the possible signal. The solid and dashed lines

correspond to the parameter values in M1 and M2, respec-

tively.

6.2 Significance of a Signal

As described in Section 5.1, the likelihood function can be

used to infer whether our observation can be statistically

explained by the assumed backgrounds alone. To this end,

we employ the likelihood ratio test. The result of this test

naturally depends on the best fit point in parameter space,

and we thus perform the test for both likelihood maxima

discussed above. The resulting statistical significances, at

which we can reject the background-only hypothesis, are

for M1: 4.7σ
for M2: 4.2σ.

In the light of this result it seems unlikely that the

backgrounds which have been considered can explain the

data, and an additional source of events is indicated.

Dark Matter particles, in the form of coherently scatter-

ing WIMPs, would be a source with suitable properties.

We note, however, that the background contributions are

still relatively large. A reduction of the overall background

level will reduce remaining uncertainties in modeling these

backgrounds and is planned for the next run of CRESST

(see Section 7).

6.3 WIMP Parameter Space

In spite of this uncertainty, it is interesting to study the

WIMP parameter space which would be compatible with

our observations. Fig. 13 shows the location of the two

likelihood maxima in the (mχ,σWN)-plane, together with

the 1σ and 2σ confidence regions derived as described in

Section 5.1. The contours have been calculated with re-

spect to the global likelihood maximum M1. We note that

the parameters compatible with our observation are con-

sistent with the CRESST exclusion limit obtained in an
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Fig. 13. The WIMP parameter space compatible with the

CRESST results discussed here, using the background model

described in the text, together with the exclusion limits from

CDMS-II [12], XENON100 [13], and EDELWEISS-II [14], as

well as the CRESST limit obtained in an earlier run [1]. Ad-

ditionally, we show the 90% confidence regions favored by Co-

GeNT [15] and DAMA/LIBRA [16] (without and with ion

channeling). The CRESST contours have been calculated with

respect to the global likelihood maximum M1.

earlier run [1], but in considerable tension with the limits

published by the CDMS-II [12] and XENON100 [13] ex-

periments. The parameter regions compatible with the ob-

servation of DAMA/LIBRA (regions taken from [16]) and

CoGeNT [15] are located somewhat outside the CRESST

region.

7 Future Developments

Several detector improvements aimed at a reduction of the

overall background level are currently being implemented.

The most important one addresses the reduction of the al-

pha and lead recoil backgrounds. The bronze clamps hold-

ing the target crystal were identified as the source of these

two types of backgrounds. They will be replaced by clamps

with a substantially lower level of contamination. A sig-

nificant reduction of this background would evidently re-

duce the overall uncertainties of our background models

and allow for a much more reliable identification of the

properties of a possible signal.

Another modification addresses the neutron back-

ground. An additional layer of polyethylene shielding

(PE), installed inside the vacuum can of the cryostat, will

complement the present neutron PE shielding which is

located outside the lead and copper shieldings.

The last background discussed in this work is the leak-

age from the e/γ-band. Most of these background events

are due to internal contaminations of the target crystals

so that the search for alternative, cleaner materials and/or

production procedures is of high importance. The mate-

rial ZnWO4, already tested in this run, is a promising

candidate in this respect.

obtained by setting an = 0 in Eq. 6 and yields the ratio CSD
p /CSD

p(F ) =
1.285 [24, 25]. With Eq. 7 the fit result for σF can be converted into a
cross section on protons of σSD

p = −0.008± 0.022± 0.002 pb (1 standard de-
viation; a = 5), yielding a best limit of σSD

p = 0.032 pb (90% C.L.) for WIMP
masses around 20 GeV/c2. The resulting exclusion curve for the WIMP cross
section on protons as a function of WIMP mass is shown in Fig. 6 together
with published results in the spin dependent sector. The broadening of the
exclusion curve shows the effect of varying the energy resolution parameter
a within its uncertainty.
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Figure 6: Upper limits at 90% C.L. on spin dependent WIMP-proton interactions. PI-
CASSO limits are shown as full lines. Additional curves are from KIMS [26], COUPP [27]
and SIMPLE [28]7. The DAMA/LIBRA [5, 29] allowed regions are also shown (light
grey: with ion channelling). Also shown are the spin dependent search results in both
soft and hard annihilation channels from SuperK [30] and AMANDA-II/IceCube [31]; and
theoretical predictions discussed in [32, 33].

7The SIMPLE collaboration has recently claimed very competitive limits in
arXiv:1106.3014; see, however, arXiv:1106.3559 and arXiv:1107.1515.
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As described in Section 5.1, the likelihood function can be

used to infer whether our observation can be statistically

explained by the assumed backgrounds alone. To this end,

we employ the likelihood ratio test. The result of this test

naturally depends on the best fit point in parameter space,

and we thus perform the test for both likelihood maxima

discussed above. The resulting statistical significances, at

which we can reject the background-only hypothesis, are

for M1: 4.7σ
for M2: 4.2σ.

In the light of this result it seems unlikely that the

backgrounds which have been considered can explain the

data, and an additional source of events is indicated.

Dark Matter particles, in the form of coherently scatter-

ing WIMPs, would be a source with suitable properties.

We note, however, that the background contributions are

still relatively large. A reduction of the overall background

level will reduce remaining uncertainties in modeling these

backgrounds and is planned for the next run of CRESST

(see Section 7).
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In spite of this uncertainty, it is interesting to study the
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described in the text, together with the exclusion limits from
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well as the CRESST limit obtained in an earlier run [1]. Ad-

ditionally, we show the 90% confidence regions favored by Co-

GeNT [15] and DAMA/LIBRA [16] (without and with ion

channeling). The CRESST contours have been calculated with

respect to the global likelihood maximum M1.
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periments. The parameter regions compatible with the ob-

servation of DAMA/LIBRA (regions taken from [16]) and

CoGeNT [15] are located somewhat outside the CRESST

region.
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Several detector improvements aimed at a reduction of the

overall background level are currently being implemented.

The most important one addresses the reduction of the al-

pha and lead recoil backgrounds. The bronze clamps hold-

ing the target crystal were identified as the source of these

two types of backgrounds. They will be replaced by clamps

with a substantially lower level of contamination. A sig-

nificant reduction of this background would evidently re-

duce the overall uncertainties of our background models

and allow for a much more reliable identification of the

properties of a possible signal.

Another modification addresses the neutron back-

ground. An additional layer of polyethylene shielding

(PE), installed inside the vacuum can of the cryostat, will

complement the present neutron PE shielding which is

located outside the lead and copper shieldings.

The last background discussed in this work is the leak-

age from the e/γ-band. Most of these background events

are due to internal contaminations of the target crystals

so that the search for alternative, cleaner materials and/or

production procedures is of high importance. The mate-

rial ZnWO4, already tested in this run, is a promising

candidate in this respect.

obtained by setting an = 0 in Eq. 6 and yields the ratio CSD
p /CSD

p(F ) =
1.285 [24, 25]. With Eq. 7 the fit result for σF can be converted into a
cross section on protons of σSD

p = −0.008± 0.022± 0.002 pb (1 standard de-
viation; a = 5), yielding a best limit of σSD

p = 0.032 pb (90% C.L.) for WIMP
masses around 20 GeV/c2. The resulting exclusion curve for the WIMP cross
section on protons as a function of WIMP mass is shown in Fig. 6 together
with published results in the spin dependent sector. The broadening of the
exclusion curve shows the effect of varying the energy resolution parameter
a within its uncertainty.
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Leading non-rel operators of DM-SM interactions

[1008.1591, Fan, Reese, Wang]

Relativistic operators       Non-relativistic operators

4

Why the next leading order (in    )?

Magnetic dipole interaction [1007.4200,1007.5325]: 

DM - Nucleus interactions          Nuclear Responses

eg��Q�rχ̄σµνqνχN̄γµN/m2
AL ⊃ g�Q�rχ̄σµνχF �

µν + �FµνF
�µν

q2
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Galilean-invariant, Hermitian quantities: 

�SN

Non-relativistic operators          

Lint =
�

N=n,p

�

i

c(N)
i Oiχ

+χ−N+N−

Oi

(transfer momentum) (DM spin)

(nucleon spin)

i�q �Sχ

�v⊥ ≡ 1

2
(�vχ,in + �vχ,out − �vN,in − �vN,out)

1, (v⊥)2, i�SN · (�q × �v⊥)O1,O2,O3 :

�Sχ · �SN , i�Sχ · (�q × �v⊥), (�Sχ · �q)(�SN · �q)O4,O5,O6 :

�SN · �v⊥,O7 :

�Sχ · �v⊥, i�Sχ · (�SN × �q)O8,O9 :

i�SN · �q,O10 :

i�Sχ · �q.O11 :
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Non-rel operators           Nuclear Responses

f �χ, Nucleus|Oi|χ, Nucleus�i

5 nuclear response operators

1. SI

SD

4. Angular momentum

5. Angular momentum - spin  coupling

2. Longitudinal SD

3. Transverse SD

�f |(�L · �S)N |i�

�f |�LN |i�

�f |�q × �SN |i�

�f |�q · �SN |i�

[1007.4200, Chang, Weiner, Yavin]

(New operator, interferes with SI)
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Figure 4: Size of integrated form factors for a DM of 3 GeV (integrated against the velocity
distribution) for different nuclear responses.
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vmin=

q
2µT

d3v f(v)
v

�∞
0 qdqF (q2) for the coherent vs.

angular-momentum-dependent pieces indicated, with mχ = 100 GeV.

way,

dσ

d cos θ
=

1

2jχ + 1

1

2j + 1

�

spins

1

32π

|M|2

(mχ +mT )2
, (53)

where we have averaged over 2jχ + 1 and 2j + 1 initial dark matter and nuclear spins, and
summed over the final spins. The matrix-elements-squared in general contain interference
terms between the different operators, and this leads to a large number of possible different
form factors. A general Lagrangian of the form

L =
12�

i=1

c(n)i O
(n)
i + c(p)i O

(p)
i , (54)

will therefore lead to a matrix-elements-squared that can be written

1

2jχ + 1

1

2j + 1

�

spins

|M|
2 =

m2
T

m2
N

12�

i,j=1

�

N,N �=p,n

c(N)
i c(N

�)
j F (N,N �)

ij (v2, q2), (55)

where the form factors F (N,N �)
ij (q2) are symmetric in (i, N) ↔ (j,N �). We give approximations

for them at the most relevant nuclei in appendix A. We have factored out the generic kinematic
term

m2
T

m2
N
which arises due to the conventional relativistic normalization of states. Because the

25

w/ form factors defined as

... in particular, for               ,  there is an              enhancement.(�L · �S)N l2highest

l

l +
1

2

l − 1

2
�l · �s ∼ −(l + 1)/2

�l · �s ∼ l/2 (�L · �S)N ∼ l2highest

n+

n−

At low DM mass :

∆n± ∼ l
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Xe,  Ge,  F,  Na,  I,  (W, Si, O, ...)  

# of constraining directions 
= 

# of nuclear orbitals with non-zero S matrix 
of these operators

cp1

cn1

c(N)
i



Understanding nuclear targets in probing 
the larger parameter space
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Xe,  Ge,  F,  Na,  I,  (W, Si, O, ...)  

# of constraining directions 
= 

# of nuclear orbitals with non-zero S matrix 
of these operators

Flat directions for small-spin targets at low energy

cp1

cn1

c(N)
i
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O1 = 1
�

J cJMJ0

O3 = i�SN · (�q × �v)
�

J cJ
�

q2

2mN
Φ��

J0 − (i�q × �v⊥T ) ·
��

λ=±1 2
− 1

2�e ∗
λ (iΣ

�
Jλ)

��

O4 = �Sχ ·
�SN

1
2
�Sχ ·

�
J cJ

�
�e0iΣ��

J0 −
�

λ=±1 2
− 1

2�e ∗
λ (iΣ

�
Jλ)

�

O5 = i�Sχ · (�q × �v) (�Sχ × i�q) ·
�

J cJ
�
�v⊥T MJ0(q�x)− iq

mN

�
λ=±1 2

− 1
2�e ∗

λ (λ∆Jλ)
�

O6 = (�Sχ · �q)(�SN · �q) (�q · �Sχ)
�q
2 ·

�
J cJ

�
�e0iΣ��

J0 −
�

λ=±1 2
− 1

2�e ∗
λ (iΣ

�
Jλ)

�

O7 = �SN · �v⊥
�

J cJ
�
−1

2�v
⊥
T ·

�
λ=±1 2

− 1
2�e ∗

λ (iΣ
�
Jλ)

�

O8 = �Sχ · �v⊥ �Sχ ·
�

J cJ
�
�v⊥T MJ0 − iq

mN

�
λ=±1 2

− 1
2�e ∗

λ (λ∆Jλ

�

O9 = i�Sχ · (�SN × �q) −1
2(i�q × �Sχ) ·

�
J cJ

��
λ=±1 2

− 1
2�e ∗

λ (iΣ
�
Jλ)

�

O10 = i�SN · �q −1
2

�
J cJqΣ

��
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For elastic scattering, ΣJλ, Ω̃J0 and ∆̃�
Jλ do not contribute due to their parity, and all form

factors can be written in terms of a small set:
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for X = M,Σ�,Σ��,∆,Φ��, are required for the diagonal matrix elements. Additionally,
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for (X, Y ) = (M,Φ��) and (Σ�,∆) appear when there is interference between different re-
sponses. If one prefers a basis of isoscalar c(0) = c(n) + c(p) and isovector c(1) = c(p) − c(n)

couplings, rather than the basis of neutron (N = n) and proton (N = p) couplings we have
chosen here, then one can use an isoscalar-isovector form of the general event rate formula
eq. (56),
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χ̄χN̄N 4mχmN1χ1N 4mχmNO1

iχ̄χN̄γ5N −4mχiq · SN −4mχO10
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P µχ̄γ5χKµN̄γ5N −16mNmχq · Sχq · SN −16mNmχO6

Many combinations have not been included since they are equivalent by the equations of
motion, and the above terms tend to give simpler non-relativistic pieces. The most commonly
used such combination is the vector interaction γµ, which can be written in terms of the above
by using the Gordon identity:

N̄γµN =
1

2mN
N̄ (Kµ − iσµνqν)N. (97)

Note that every non-relativistic operator occurs in the above table, except for O2, which
appear if there are cancellations in the leading pieces, for instance through the linear combi-
nation (4mNmχχ̄χN̄N − P µχ̄χKµN̄N).

D Single-particle Operators

Four of the six operators introduced in section 3 are familiar from standard treatments of
semi-leptonic electroweak interactions [17, 18], MJM(q�x), ∆JM(q�x), Σ�

JM(q�x), and Σ��
JM(q�x).

The matrix elements of these operators between single-particle harmonic oscillator states, the
most common basis for nuclear physics calculations, can be evaluated analytically, yielding
explicit forms for the nuclear form factors governing DM scattering. A Mathematica script
[25] and tables [18] are available. The remaining two operators are a symmetrized form of Φ�

JM

and Φ��
JM , operators originally introduced by Serot [19] in his treatment of 1/M2 corrections

48

χ̄χN̄N 4mχmN1χ1N 4mχmNO1

iχ̄χN̄γ5N −4mχiq · SN −4mχO10

iχ̄γ5χN̄N 4mN iq · Sχ 4mNO11

iχ̄γ5χN̄γ5N −4q · Sχq · SN −4O6

P µχ̄χKµN̄N (4mχmN)21χ1N (4mχmN)2O1

P µχ̄χN̄iσµαqαN (4m2
χ)q

2 − 16mNm2
χiv

⊥ · (q × SN) 4m2
χq

2O1 + 16mNm2
χO3

P µχ̄χN̄γµγ5N 16mNm2
χv

⊥ · SN 16mNm2
χO7

iP µχ̄χKµN̄γ5N −16m2
χmN iq · SN −16m2

χmNO10

χ̄iσµνqνχKµN̄N −(2mN)2q2 + 4m2
Nmχiv⊥ · (q × Sχ) −4m2

Nq
2O1 − 4m2

NmχO5

χ̄iσµνqνχN̄iσµαqαN 16mχmN(q × Sχ) · (q × SN) 16mNmχ(q2O4 −O6)
χ̄iσµνqνχN̄γµγ5N −16mNmχiSN · (q × Sχ) −16mNmχO9

iχ̄iσµνqνχKµN̄γ5N 4mN(q2 − 4mχiv⊥ · (q × Sχ))iq · SN 4mNO10(q2 + 4mχO5)
χ̄γµγ5χKµN̄N 16m2

Nmχv⊥ · Sχ 16m2
NmχO8

χ̄γµγ5χN̄iσµαqαN −16mχmN iSχ · (q × SN) 16mχmNO9

χ̄γµγ5χN̄γµγ5N −16mNmχSχ · SN −16mNmχO4

iχ̄γµγ5χKµN̄γ5N −16mχmNv⊥ · Sχiq · SN −16mχmNO10O8

iP µχ̄γ5χKµN̄N 16m2
Nmχiq · Sχ 16m2

NmχO11

P µχ̄γ5χN̄iσµαqαN (4mχ)(q · Sχ)(q2 − 4mN iv⊥ · (q × SN)) 4mχO11(q2 + 4mNO3)
iP µχ̄γ5χN̄γµγ5N −16mχmN(iq · Sχ)v⊥ · SN −16mχmNO11O7

P µχ̄γ5χKµN̄γ5N −16mNmχq · Sχq · SN −16mNmχO6

Many combinations have not been included since they are equivalent by the equations of
motion, and the above terms tend to give simpler non-relativistic pieces. The most commonly
used such combination is the vector interaction γµ, which can be written in terms of the above
by using the Gordon identity:

N̄γµN =
1

2mN
N̄ (Kµ − iσµνqν)N. (97)

Note that every non-relativistic operator occurs in the above table, except for O2, which
appear if there are cancellations in the leading pieces, for instance through the linear combi-
nation (4mNmχχ̄χN̄N − P µχ̄χKµN̄N).

D Single-particle Operators

Four of the six operators introduced in section 3 are familiar from standard treatments of
semi-leptonic electroweak interactions [17, 18], MJM(q�x), ∆JM(q�x), Σ�

JM(q�x), and Σ��
JM(q�x).

The matrix elements of these operators between single-particle harmonic oscillator states, the
most common basis for nuclear physics calculations, can be evaluated analytically, yielding
explicit forms for the nuclear form factors governing DM scattering. A Mathematica script
[25] and tables [18] are available. The remaining two operators are a symmetrized form of Φ�

JM

and Φ��
JM , operators originally introduced by Serot [19] in his treatment of 1/M2 corrections

48
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for (X, Y ) = (M,Φ��) and (Σ�,∆) appear when there is interference between different re-
sponses. If one prefers a basis of isoscalar c(0) = c(n) + c(p) and isovector c(1) = c(p) − c(n)

couplings, rather than the basis of neutron (N = n) and proton (N = p) couplings we have
chosen here, then one can use an isoscalar-isovector form of the general event rate formula
eq. (56),
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Many combinations have not been included since they are equivalent by the equations of
motion, and the above terms tend to give simpler non-relativistic pieces. The most commonly
used such combination is the vector interaction γµ, which can be written in terms of the above
by using the Gordon identity:

N̄γµN =
1

2mN
N̄ (Kµ − iσµνqν)N. (97)

Note that every non-relativistic operator occurs in the above table, except for O2, which
appear if there are cancellations in the leading pieces, for instance through the linear combi-
nation (4mNmχχ̄χN̄N − P µχ̄χKµN̄N).

D Single-particle Operators

Four of the six operators introduced in section 3 are familiar from standard treatments of
semi-leptonic electroweak interactions [17, 18], MJM(q�x), ∆JM(q�x), Σ�

JM(q�x), and Σ��
JM(q�x).

The matrix elements of these operators between single-particle harmonic oscillator states, the
most common basis for nuclear physics calculations, can be evaluated analytically, yielding
explicit forms for the nuclear form factors governing DM scattering. A Mathematica script
[25] and tables [18] are available. The remaining two operators are a symmetrized form of Φ�

JM

and Φ��
JM , operators originally introduced by Serot [19] in his treatment of 1/M2 corrections
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by all symmetries of the theory, then q2nO is as well. It is therefore natural to classify all
such operators as a single one with a q2-dependent coefficient, or form factor:

c0O + c2q
2
O + c4q

4
O + . . . ≡ FO

�
q2

Λ2

�
O. (17)

Massless mediators can be incorporated by including a FO ∼ q−2 term, though strictly speak-
ing this is not an effective operator. A related point is that at the upper range range of
momentum at experiments, the pion should be included in the effective theory and χ-χ-π
couplings allowed. For instance, if the underlying DM model contains couplings such as
χ̄γµγ5χJµ5

3 of DM to the axial current Jµ5
3 = iq̄γµγ5τ3q, then the effective theory will couple

χ’s to pions due to the overlap of Jµ5 with π. Such interactions would contribute to dark
matter-nucleon scattering through t-channel pion exchange at tree-level, effectively producing
FO ∝ 1

q2+m2
π
form factors in χ-χ-N -N interactions.

So far, we have mainly discussed momentum scales. In addition, there is an energy scale
associated with the scattering process, of size ωq ∼ q2/2mT � 200 keV. This is usually negli-
gible, as the binding energy ω of nucleons is about 10 MeV per nucleon for most elements, and
inelastic transitions are kinematically suppressed. However, for nuclei with small splittings
∼ ωq between the ground state and an excited state, it could affect direct detection rates.

We are now ready to present the possible non-relativistic interactions. The general La-
grangian is

Lint =
�

N=n,p

�

i

c(N)
i Oiχ

+χ−N+N−, (18)

with the following set of operators. Of the T-even operators, we have

1. P-even, Sχ-independent

O1 = 1, O2 = (v⊥)2, O3 = i�SN · (�q × �v⊥), (19)

2. P-even, Sχ-dependent

O4 = �Sχ ·
�SN , O5 = i�Sχ · (�q × �v⊥), O6 = (�Sχ · �q)(�SN · �q), (20)

3. P-odd, Sχ-independent

O7 = �SN · �v⊥, (21)

4. P-odd, Sχ-dependent

O8 = �Sχ · �v
⊥, O9 = i�Sχ · (�SN × �q) (22)
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