Lepton Number Violation and W' Chiral Couplings at the LHC¹

Richard Ruiz

Univ. of Wisconsin - Madison & University of Pittsburgh

May 7, 2012 Phenomenology 2012 (#Pheno2012)

・ロト ・日下・ ・ ヨト

The Standard Model (SM) of Particle Physics

- **SM**: A fantastically successful theory that describes the microscopic interactions of matter.

- Consists of 6 objects: $\ell, q; \overline{u}, \overline{d}, \overline{e}; \Phi$, with huge multiplicity.

- Impose local invariance, break with $\langle \Phi_0 \rangle = v,$ and voilà! We have a universe!

- Quarks (g, γ, W, Z)
- ► Neutral leptons (neutrinos) (W, Z)
- Charged leptons (γ, W, Z)
- Gluon mediates SU(3)_{Color}
- Photon mediates U(1)_{EM}
- W^{\pm}/Z^0 mediate $SU(2)_{Left}$
- h dynamically generates masses
 Only missing piece!

Even with SM Higgs, Questions Remain: Motivation for New Physics

- What is the origin of neutrino masses?
 - Dirac mass terms require N_R
 - \triangleright N_R are SM singlets and may have Majorana mass terms, too.
- What is the origin of Parity Asymmetry in SM
 - ▶ Is there a V + A structure, $SU(2)_R$, too? Is it from SU(5)?

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

- Lots of different phenomenology.
- Are these even independent questions?

Even with SM Higgs, Questions Remain: Motivation for New Physics

- What is the origin of neutrino masses?
 - Dirac mass terms require N_R
 - \triangleright N_R are SM singlets and may have Majorana mass terms, too.
- What is the origin of Parity Asymmetry in SM
 - ▶ Is there a V + A structure, $SU(2)_R$, too? Is it from SU(5)?
 - Lots of different phenomenology.
- Are these even independent questions?
- Left-Right Symmetric theories, GUTS, SUSY GUTS, Extra Dim w/ KK, Little Higgs w/ new gauge sectors
 - Commonality 1: N_R (SM singlet) + heavy mass states
 - Commonality 2: Some charged vector boson W'^{\pm} .

3. Model Discrimination with W' and N

Issue: These are phenomenologically similar models.

- Measuring chiral couplings to W' is imperative.

²Keung & Senjanovic [PRL 50 (1983)]

3. Model Discrimination with W' and N

Issue: These are phenomenologically similar models.

- Measuring chiral couplings to W' is imperative.

Solution: Use model-independent parameterization. - Parameters can then be measured with the spectacular *L*-Violating process²: $u\overline{d} \rightarrow W'^+ \rightarrow N\ell^+ \rightarrow \ell^+\ell^+q'\overline{q}$

・ロト ・ 日本 ・ 日本 ・ 日本

Э

²Keung & Senjanovic [PRL 50 (1983)]

3. Why $u\overline{d} \to W'^+ \to N\ell^+ \to \ell^+\ell^+q'\overline{q}$?

- 1. W' is heavy³. At the LHC, an *s*-channel $ud \to W'^+$ annihilation provides the best opportunity to produce it.
- 2. N must also be heavy⁴. The $W'^+ \rightarrow N\ell^+$ sub-process is the least constrained by phase space (v.s. *t*-channel N exchange).
- 3. $W^- \rightarrow q' \overline{q}(jj)$ allows for full reconstruction of kinematics; W-tagging is also a powerful background reducer.
- 4. $pp \rightarrow \ell^+ \ell^+ jj$ is a lepton number-violating process and a "smoking-gun" indication of Majorana behavior⁵.

³CMS Collaboration [arXiv:1204.4764] ⁴ATLAS Collaboration [arXiv:1203.5420] ⁵T. Han, et. al. [arXiv:hep-ph/0505260]

Outline

Synopsis: We have investigated the production of a heavy Majorana N in association with a heavy W', and have determined an efficient way to measure the couplings associated with a model-independent parameterization of W' at the LHC.

- 1. The Standard Model
- 2. Motivation
 - ► For New Physics
 - ▶ For Lepton No. Violation in association with Chiral Couplings

- 3. Model Discrimination with W' and N
 - Utility of the $pp \rightarrow \ell^+ \ell^+ jj$ collider signature
- 4. Model-Independent Parameterization
- 5. Analytic Results
- 6. Numerical Results
- 7. Summary & Conclusion

4. Model-Independent Parameterization (1/1.5)

W' coupling to quarks:

$$\mathcal{L} = -rac{1}{\sqrt{2}} W_{\mu}^{\prime +} \overline{u_i} V_{ij}^{\mathcal{C}\mathcal{K}\mathcal{M}^{\prime}} \gamma^{\mu} \left[g_{\mathcal{R}}^{\, q} P_{\mathcal{R}} + g_{\mathcal{L}}^{\, q} P_{\mathcal{L}}
ight] d_j + h.c.$$

W' coupling to leptons.

$$\begin{split} \mathcal{L} &= -\frac{\mathcal{G}_{R}^{\ell}}{\sqrt{2}} W_{\mu}^{\prime +} \left[\sum_{m=1}^{3} \overline{\nu_{m}^{c}} C_{m\ell}^{R} + \overline{N} D_{N\ell}^{R} \right] \gamma^{\mu} P_{R} \ell^{-} \\ &- \frac{\mathcal{G}_{L}^{\ell}}{\sqrt{2}} W_{\mu}^{\prime +} \left[\sum_{m=1}^{3} \overline{\nu_{m}} C_{m\ell}^{L*} + \overline{N^{c}} D_{N\ell}^{L*} \right] \gamma^{\mu} P_{L} \ell^{-} + h.c. \end{split}$$

E.g., Left-Right Symmetric W[']_R

Light mass mixing is small and heavy mass mixing is large:

$$g_L \equiv 0, \quad |C_{m\ell}^R| \sim \mathcal{O}\left(\frac{m_m}{m_N}\right) \text{ for } m \leq 3, \text{ and } |D_{N\ell}^R| \sim \mathcal{O}\left(1\right)$$

4. Model-Independent Parameterization (1.5/1.5)

SM W coupling to leptons:

$$\mathcal{L} = -\frac{g}{\sqrt{2}}W_{\mu}^{\prime +} \left[\sum_{m=1}^{3}\overline{\nu_{m}}U_{m\ell}^{*} + \overline{N^{c}}V_{N\ell}^{*}\right]\gamma^{\mu}P_{L}\ell^{-} + h.c.$$

Light mass mixing is large and heavy mass mixing is small:

$$|U_{m\ell}|\sim \mathcal{O}\left(1
ight), ext{ and } |V_{m\ell}|\sim \mathcal{O}\left(rac{m_m}{m_N}
ight) ext{ for } m\leq 3$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

5. Pre-Results: Definition of Observables θ_{ℓ_2} and Φ

Production Plane: Take initial $2 \rightarrow 2$ process in CM frame, then rotate and boost into N's rest frame

Decay Plane: N's products relative to \hat{p}_N (Direction of N in CM)

イロト 不得下 不同下 不同下

5. Pre-Results: Definition of Observables θ_{ℓ_2} and Φ

Production Plane and **Decay Plane** share same axis, so angle between two can be defined

- Algebraically: dot products of cross products of 3-momenta

Э

5. Analytical Result I: Coupling to Final-State Leptons

- Analytical calculation of angular distributions leads to fascinating results!

$$\frac{d\hat{\sigma}}{d\cos\theta_{\ell_2}} = \frac{\hat{\sigma}_0}{2} \left[1 + \mathcal{A} \cdot \left(\frac{g_R^{\ell_2} - g_L^{\ell_2}}{g_R^{\ell_2} + g_L^{\ell_2}} \right) \cdot \cos\theta_{\ell_2} \right],$$

where ${\cal A}$ contains a few mass ratios, etc., and

$$\hat{\sigma}_{0} = \hat{\sigma}_{Tot.}(u\overline{d} \to \ell^{+}\ell^{+}W^{-}) \times \mathcal{BR}(W \to q\overline{q}').$$

- This is a measurement of W' coupling to leptons.
- Slope of angular distribution is sensitive to handedness of W'.

• $\mathcal{A} \to -\mathcal{A}$ for Dirac neutrino case $(\ell^+ \ell^- jj)$.

5. Analytical Result II: Coupling to Initial-State Quarks

- We see some surprising results, too!

$$\frac{d\hat{\sigma}}{d\Phi} = \frac{\hat{\sigma}_0}{2\pi} \left[1 + \mathcal{B} \cdot \left(\frac{g_R^{q\,2} - g_L^{q\,2}}{g_R^{q\,2} + g_L^{q\,2}} \right) \cdot \cos \Phi \right],$$

where ${\cal B}$ contains a few mass ratios, etc., and

$$\hat{\sigma}_{0} = \hat{\sigma}_{Tot.}(u\overline{d} \to \ell^{+}\ell^{+}W^{-}) \times \mathcal{BR}(W \to q\overline{q}').$$

- ► This is a measurement of W' couplings to quarks.
- Slope of angular distribution is sensitive to handedness of W'.
- $\mathcal{B} \to -\mathcal{B}$ for Dirac neutrino case $(\ell^+ \ell^- j j)$.
 - Majorana nature of N can be verified with angular distributions!

6. Running the Numbers: Monte Carlo Input

To demonstrate usefulness of the $W'^+ \rightarrow \ell^+ \ell^+ j j$ signal for measuring model parameters, we assume the following input:

- ► $pp \rightarrow W'^+ \rightarrow \mu^+ \mu^+ \overline{q} q'$
 - $\sqrt{s} = 14$ TeV pp Collisions

► W'+:

•
$$M_{W'} = 2.5 \text{ TeV}$$

• $g_R^{\ell,q} = 1, g_L^{\ell,q} = 0$, i.e., pure gauge state W'_R .
• $g_R^{\ell,q} = 0, g_L^{\ell,q} = 1$, i.e., pure gauge state W'_L .
• $|V_{u\overline{d}}^{CKM'}|^2 = 1$ for the $u\overline{d}W'^+$ vertex.
• N :

▶
$$m_N = 500$$
 GeV (only one heavy mass state)
▶ $|V_{\mu N}|^2 = 5.0 \times 10^{-4}$ for the $N \to W^- \mu^+$ vertex⁶
▶ $|D_{\mu N}^L|^2 = |D_{\mu N}^R|^2 = 1$ for the $W^{'+} \to N\mu^+$ vertex

 6. Numerical Results I: Cross Section

• Cross section (fb) for $pp \rightarrow W'^+ \rightarrow \mu^+ \mu^+ \overline{q} q'$

- Reconstruction/selection details in "Backup Slides"
- ▶ Irreducible background < 0.1 fb

$\sigma(fb)$	7 TeV	7 TeV	14 TeV	14 TeV
Cuts	W'_L	W'_R	W'_L	W'_R
Event Reco.	0.095	0.12	2.7	3.6
Smear + Kinematics	0.083	0.088	2.4	2.6
+ Isolation	0.049	0.071	1.2	2.0
$+ M_{W'}^{Cand} + m_N^{Cand}$ Cuts	0.026	0.048	0.95	1.8
$+ \not E_T + m_{jj}$ Cut	0.022	0.042	0.77	1.5
$\mathcal{A} = \sigma_{AllCuts} / \sigma_{Reco}$	23%	35%	29%	42%

6. Numerical Results II: Polar Distribution (g^{ℓ})

- ► (L) No smearing or cuts; (R) smearing and full selection cuts
- Great Agreement!
 - Jet-isolation cut not applied (Jets are very collinear).

6. Numerical Results III: Azimuthal Distribution (g^q)

- Dependent on $(m_N/M_{W'})^2$, so set $m_N = 1.25$ TeV for clarity.
- ► (L) No smearing or cuts; (R) smearing and full selection cuts
- Great Agreement!
 - Jet-isolation cut not applied (Jets are very collinear).

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Summary & Conclusion

- If new physics appears in the form of W' & N, we are ready to exploit it for whatever it is worth.
 - Chiral couplings to leptons
 - Chiral couplings to quarks
 - Discriminating power between Dirac and Majorana behavior
- ► The LHC Experiments' Mantra: Be ready for new physics.
 - ▶ With so much data, we better be!

Thank You! Questions?

[Credit: NYTimes *nyti.ms/oPvA*0*a*]

Backup

6. Event Reconstruction (1/2)

 In order to make our events more realistic, we apply a Gaussian smearing to the reconstructed μ and j energies:

$$\frac{\sigma(E)}{E} = \frac{\mathsf{a}}{\sqrt{E}} \oplus \mathsf{b},$$

with a(a) = 5(100)% and b(b) = 0.55(5)%;

Followed by basic fiducial + kinematic cuts:

$$p_{\mathcal{T}}^{j} \geq$$
 30 GeV, $p_{\mathcal{T}}^{\ell} \geq$ 20 GeV, $|\eta_{j}| \leq$ 3.0 $|\eta_{\ell}| \leq$ 2.5;

► For particles *i* and *j*, we define the isolation parameter $\Delta R_{ij} = \sqrt{(\Delta \phi_{ij})^2 + (\Delta \eta_{ij})^2}$, and require

$$\Delta R_{jj} \geq 0.3, \ \Delta R_{\ell i}^{min} \geq 0.4,$$

where $\Delta R_{\ell i}^{min}$ represents the smallest $\Delta R_{\ell j}$ amongst $\mu_1^+ \& \mu_2^+$

6. Event Reconstruction (2/2)

The invariant mass distributions from reconstructed pseudo-experiment events:

•
$$m_{W'}^{Reco.} = m_{\ell\ell jj}$$
 and $m_N^{Reco.} = \min_{\ell=\mu_1,\mu_2} [m_N - m_{\ell jj}]$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

6. LHC Monte Carlo: Event Selection (1/1)

- Apply standard smearing, kinematic cuts, and isolation cuts.
- Impose cuts on the reconstructed candidate mass m_N^{Reco} and m_{W'}^{Reco}:

$$rac{|m_N^{Reco.}-m_N|}{m_N} \leq 0.1, \& \quad rac{|\sqrt{\hat{s}}-M_{W'}^{Reco.}|}{M_{W'}} \leq 0.1;$$

$$\not\!\!E_T < 30 \text{ GeV}, \quad 60 \text{ GeV} < M_W^{Reco} < 100 \text{ GeV}.$$

The irreducible background comprises rare SM processes, e.g., pp → W[±]W[±]W[∓], and contribute at most 0.085 fb.