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⋆ The LHC has been running fabulously.

⋆ We saw physics results that pushed probed superpartners beyond the reach of

the Tevatron with just 35 pb−1 of integrated luminosity, a testimony to how well

the detectors worked.

⋆ We have now seen results from Moriond with ∼ 5 fb−1 of data. Lower limits of

1.2-1.4 TeV if mq̃ ∼ mg̃, or mg̃
>
∼ 700 − 800 GeV if squarks are much heavier.

⋆ The LHC has accumulated an integrated luminosity of ∼ 5.6 fb−1 at 7 TeV,

∼ 1 fb−1 at 8 TeV, and has the goal to accumulate 15 fb−1 at 8 TeV before the

shutdown for the big energy upgrade
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MORIOND 2012

ATLAS CMS

SHOULD WE DESPAIR THAT SUSY HAS NOT BEEN FOUND AT THE TEV

SCALE?
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Mainly first generation squarks are produced at the LHC for mq̃
>
∼ 1.2 TeV.

Second/third generation squark production is subdominant (accentuated even more

at LHC8). Should view LHC squark bound as a limit on first generation squarks.
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On the other hand

Supersymmetry stabilizes the hierarchy as long as

sparticles that couple significantly to the Higgs boson – these are the the EW-inos

and 3rd generation sfermions – are close to, or below, the TeV scale.

The LHC, however, mainly produces first generation squarks and gluinos. These

1.2-1.4 TeV limits, therefore apply to gluinos and first generation squarks that do not

couple directly to the Higgs sector!. The EW scale would be stable even if these guys

were at multi-TeV scales!!!!!!

Indeed such scenarios have been proposed to ameliorate the flavour constraints.

Dine,Kagan,Samuel; Arkani-Hamed,Murayama; Dimopoulos,Giudice; Pomarol,Tomassini; Cohen,Kaplan,Nelson;

Baer,Kraml,Lessa,Sekmen,XT
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But there is more to the stability story than just squark masses.

1
2M2

Z =
(m2

Hd
+Σd)−(m2

Hu
+Σu) tan2 β

(tan2 β−1) − µ2

All five terms should be of the same order, i.e. no “large cancellations”. Call the

maximum of these Cmax
5 .

Less than 1 order of magnitude cancellation between terms implies Cmax
5 is smaller

than ∼ (200 GeV)2. (This is what Barbieri and Giudice called ∆ = 10.)

Σu ∼
3f2

t

16π2 × m2
t̃i

(
ln(mt̃2

i

/Q2) − 1
)

Notice the corrections grow quadratically with the top squark mass, so these cannot

be too heavy.

Estimate from King, Mulheitner and Nevzorov analysis hat mt̃
<
∼ 1 TeV [1.5 TeV] if

we require all terms smaller than (150 GeV)2 (200 GeV)2.
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It would seem then that gluinos and first generation squarks can be very heavy

without jeapordizing the Higgs scale.

We forgot, however, that gluino top loops give corections to the top squark mass!

δm2
t̃i

∼
2g2

s

3π2 m2
g̃× logarithms

mg̃
<
∼ 3mq̃ ∼ 4.5 TeV

Multi-ten TeV first generation squarks and sleptons ameliorate the potential flavour

and CP violations that are notorious to SUSY.

Heavier Higgs scalar could be in the multi-TeV range because m2
Hd

is large.

Heavy gravitino – whose mass scale is likely set by heaviest superpartners – solves the

cosmological gravitino problem.
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Invent a high scale set of boundary conditions that will yield such a spectrum.

m0(1, 2), m0(3), m1/2, A0, tanβ, µ, mA.

Consistent with Grand Unification symmetry.

m0(1, 2) : 5 − 50 TeV,

m0(3) : 0 − 5 TeV,

m1/2 : 0 − 5 TeV,

−4 < A0/m0(3) < 4,

mA : 0.15 − 2 TeV,

tanβ : 1 − 60.

What top down model gives such boundary conditions?

Let’s see what happens in these scenarios.

X. Tata, “PHENO 2012”, Pittsburgh, May 2012 8



Fine-tuning in various models

µ >0, mt =173.2 GeV
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Slightly different scan here from that on previous page.

Peak at 150 GeV is an artifact of fixing µ = 150 GeV.
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The light Higgs scalar
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Slightly different scan in the right frame plot.

Maximum mh in the vicnity of 126 GeV.

(Remember there is also some intrinsic error in the evaluation of mh.)
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B(b → sγ)
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Here, mq(3) is average of mt̃1
, mtst2 and mb̃1

.

B(b → sγ) can be readily accommodated, and shows no preference for the 3rd

generation mass.
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The dark matter story is different

Because |µ| is small, lightest neutralino is higgsino-like.

Typically, the thermal higgsino-wimps annihilate very efficiently resulting in too little

thermal DM (unless the WIMP is itself beyond 1 TeV).

However, if there is another thermally produced late-decaying particle, it will

contribute to the WIMP density.

Thermally produced (heavy) axinos of an axion supermultiplet could provide an

example.

In such a scenario, the DM would be a combination of higgsino WIMPS and axions

Championed by Choi, Kim, Lee and Seto; Baer, Lessa, Rajagopalan and Sreethawong

X. Tata, “PHENO 2012”, Pittsburgh, May 2012 12



Dark Matter Detection
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Assumes the WIMP neutralino saturates the DM density.

Remember though that the DM may only be part higgsino-like-WIMP.

Also, implications from Fermi bounds on 〈vσ〉 from dwarf spheroidal satellites of the

Milky Way

X. Tata, “PHENO 2012”, Pittsburgh, May 2012 13



Squarks and gluinos at the LHC

NSUSY: µ >0, mt =173.2 GeV
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The gluino cut-off is a scanning artifact. First generation squarks are way beyond

LHC reach.

No guarantees at the LHC!*?!!
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Cross section is 1 fb for mt̃1
∼ 1300 GeV at LHC14!

Of course, we need not be gloomy since the t̃1 may be lighter! Perhaps also t̃2 and

b̃1. Also, revisit g̃ search.

bb̄+ 6ET , tt̄+ 6ET and in favourable cases, also more complex topologies –

bb̄W+W−+ 6ET and ZZbb̄+ 6ET to search for a signal

Unusual search strategies may be needed.
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NSUSY: µ >0, mt =173.2 GeV
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NSUSY: µ >0, mt =173.2 GeV
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W̃1 and Z̃2 very difficult to see at LHC because of small mass gap.

An e+e− collider could be a discovery machine! Special search strategies will be

needed to beat two-photon backgounds. Baer, Belyaev, Krupovnickas and XT
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IN SUMMARY

⋆ It appears that LHC data are suggesting heavy gluinos and first generation

squarks

⋆ Not a problem for the stability of the Higgs sector.

⋆ The Natural Supersymmetry framework can accommodate this quite simply, and

will be better suited than the much studied mSUGRA/CMSSM framework for

future analysis if this trend persists.

⋆ Interesting signals possible, but perhaps not guaranteed at the LHC. Phenom

consequences of Natural SUSY are just starting to be seriously examined.
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