### Tracking the Identities of Boosted Particles

Zhenyu Han Harvard University arXiv: 1112.3378 and work in progress

May 8 @ Pheno 2012

## Outline

- Motivation: tagging boosted massive SM particles
  - W-jet as an example (top)
- Variables sensitive to jet radiation patterns
  - Orthogonal to jet grooming variables
  - Use tracking information
- Conclusion

### Boosted particles at the LHC

- LHC probes TeV scale physics
- 'Heavy' SM particles become probes to new physics
  - W: 80GeV, Z: 91GeV, top: 175GeV, Higgs: 125GeV(?) << 1TeV</li>
  - Need to standardize W/Z/top/(Higgs) tagging

## The problem

• When highly boosted, hadronically decaying particles look like a single jet in a detector.



### Jet substructure

- Hard subjets
  - Filtering/pruning/trimming
- Jet shape variables
  - Jet mass, planar flow, N-subjettiness...
- Multivariate analysis

### W-jet tagging (Cui, Han & Schwartz)



Significance improvement as a function of signal efficiency, PT=500GeV

### W-jet tagging (Cui, Han & Schwartz)



20 variables used in multivariate tagger Can we simplify? What are the best variables?

### W jets vs QCD jets

- W jet: a hard spitting at 80 GeV
   QCD jets: colinear and soft splittings
  - Identify with jet grooming algorithms
- Radiation pattern: color singlet vs color octet/triplet
  - Charged particle multiplicity
  - N-subjettiness

### Charged particle multiplicities at e+emachines



### Special configuration



- W jets vs QCD jets with a hard splitting
  - Charged particle multiplicity
  - N-subjettiness

# Charged particle multiplicity in special configuration



Nch 'proportional' to the number of dipoles

### 2-subjettiness in special configuration



Used charged particles to calculate tau2

### Application at the LHC



500 GeV jets, hard splitting identified with filtering.

### Correlations



Mfilt vs Nch

#### Mfilt vs tau2/tau1

Nch vs tau2/tau1

### Improvement in significance

|                     | $m_{\mathrm{filt}}$ | $N_{ m ch}$ | $	au_2/	au_1$ |
|---------------------|---------------------|-------------|---------------|
| $m_{\mathrm{filt}}$ | 1.15                | 1.66(1.59)  | 1.67(1.58)    |
| $N_{\rm ch}$        | _                   | 1.34        | 1.55(1.50)    |
| $\tau_2/\tau_1$     | _                   | _           | 1.39          |
| all:                | 1.85                |             |               |

Significance improvement over filtering (mfilt ~(60, 100) GeV)

### What we learn?

- Classify jet substructure variables to those sensitive to the hard splitting scale and those sensitive to the radiation pattern, which are largely uncorrelated.
- To obtain the best discriminating power, we should combine the two different kinds of variables.

### What about top jets?

- Z and Higgs very similar: color singlet
- Top more tricky: W within the jet, but top itself is colored. Work in progress.
  - The idea: simplify and relax the kinematic cuts, add charged multiplicity or other variables sensitive to radiation patterns.
  - preliminary results showing improvement

## Conclusion

- To best distinguish W/Z/Higgs/top jets from QCD jets, combine variables sensitive to hard splitting and those sensitive to radiation patterns (color structure)
- Tracking is very useful for studying jet radiation pattern
  - Charged particle multiplicity unique to tracking
  - Other variables can be also defined with charged particles