Physics from ALICE

Jörn Putschke for the ALICE Collaboration (Wayne State University)

QCD Matter Phase Diagram

Space-Time Picture of a Heavy-Ion Collisions

Space-Time Picture of a Heavy-Ion Collisions

and a (small) selection of measurements/probes I will discuss in this talk ...

and a (small) selection of measurements/probes I will discuss in this talk ...

Bulk properties; radial flow

The ALICE Experiment

p+p collisions in ALICE not only a reference ...

Particle Multiplicity in p+p Collisions

Eur. Phys. J. C68 (2010) 345-354

Particle multiplicity and density are sensitive measurements and can be used to tune p+p Monte Carlo Generators!

Jet Structure Observable(s) in p+p collisions

Excellent tracking and PID capabilities in ALICE over a wide p_T range will be used to measure jet structure observables and in particular particle identified jet fragmentation functions!

Heavy-ion Collisions in ALICE - The Bulk -

Pb+Pb @ sqrt(s) = 2.76 ATeV

2010-11-08 11:30:46 Fill : 1482 Run : 137124 Event : 0x0000000003BBE693

The Bulk - Particle Multiplicity in HI Collisions

Particle Multiplicity increases with √s Similar centrality dependence as at RHIC

The Bulk - Particle Multiplicity in HI Collisions

PRL 106 (2011) 032301

Particle Multiplicity increases with √s Similar centrality dependence as at RHIC Centrality dependence put strong constraints on theoretical calculations

Bjorken estimate of energy density:

$$\varepsilon_{Bj} = \frac{1}{\tau \pi R^2} \frac{dE_T}{d\eta}$$

Formation time τ unknown, but of the order < 1 fm/c

Bjorken estimate of energy density:

$$\varepsilon_{Bj} = \frac{1}{\tau \pi R^2} \frac{dE_T}{d\eta}$$

Formation time τ unknown, but of the order < 1 fm/c

⇒ ετ: LHC ~ 2.5 x RHIC

 $\Rightarrow \epsilon_{BJ}$ well above $\epsilon_{C} \sim 1 \text{ GeV/fm}^{3}$

$$\frac{\mathrm{d}^2 N_j}{m_T \mathrm{d}y \mathrm{d}m_T} = \int_0^{R_G} A_j m_T \cdot K_1 \left(\frac{m_T \cosh \rho}{T}\right) \cdot I_0 \left(\frac{p_T \sinh \rho}{T}\right) r dr$$
$$\rho(r) = \tanh^{-1} \beta_{\perp}(r)$$

Strong radial flow: β≈0.66 c for most central collisions

~10% higher than at RHIC

Elliptic Flow – Indicator for Early Thermalization

Jörn Putschke for the ALICE Collaboration, PHENO 2012

Elliptic Flow – Indicator for Early Thermalization

M. Gehm, S. Granade, S. Hemmer, K, O'Hara, J. Thomas - Science 298 2179 (2002): strongly interacting Fermi gas of (Fermionic) lithium-6 atoms (superfluid)

- driving spatial anisotropy vanishes ⇒ self quenching
- $v_2 \rightarrow$ sensitive to **early** interactions and pressure gradients

Elliptic Flow: RHIC vs. LHC

Strikingly similar differential p⊤ dependence of elliptic flow at RHIC and LHC

Expected mass dependence at low p_T<2 GeV (due to strong radial flow)

QGP: The (almost) perfect Liquid ...

Expected mass dependence at low p_T<2 GeV (due to strong radial flow)

Elliptic flow well described by hydrodynamics with shear viscosity values η /s close to the absolute lower bound

QGP behaves like the (almost) perfect liquid!

Constituent quark number scaling ($p_T>2$ GeV) observed \Rightarrow quarks/partons are flowing: partonic collectivity!

Initial Conditions, higher harmonics v_n and viscosity

τ=0.4 fm/c

Initial spatial geometry not a smooth "football"

Initial Conditions, higher harmonics vn and viscosity

Initial spatial geometry not a smooth "football" ⇒ give rise to higher harmonics/symmetry planes

Initial Conditions, higher harmonics vn and viscosity

Initial spatial geometry not a smooth "football" \Rightarrow give rise to higher harmonics/symmetry planes Viscosity smoothes the distributions \rightarrow suppresses higher harmonics \Rightarrow higher harmonics v_n more sensitive to η/s

Higher Harmonics v_n

Higher Harmonics vn

In very central collisions higher harmonics show similar strengths; driven by initial fluctuations

Higher Harmonics v_n

In very central collisions higher harmonics show similar strengths; driven by initial fluctuations

Different sensitivity of v_2 and v_3 (v_n) to viscosity η /s can be used to quantitatively constraint η /s an the initial conditions!

Jet-Quenching in ALICE - QGP Tomography-

Probing Dense Matter with Jets - QGP Tomography

Calibrated probe (high-p_T partons instead of X-rays) Calibrated interaction (beam of known energy and direction, geometry) Calibrated/measured initial state and CNM effects

Probing Dense Matter with Jets - QGP Tomography

Calibrated probe (high-p_T partons instead of X-rays) Calibrated interaction (beam of known energy and direction, geometry) Calibrated/measured initial state and CNM effects

Calibrated probe (high-p_T partons instead of X-rays) Calibrated interaction (beam of known energy and direction, geometry) Calibrated/measured initial state and CNM effects

⇒ All modifications in the jet structure are due to interactions with the medium!

Calibrated probe (high-p_T partons instead of X-rays) Calibrated interaction (beam of known energy and direction, geometry) Calibrated/measured initial state and CNM effects

⇒ All modifications in the jet structure are due to interactions with the medium!

Jet-quenching theory from an experimentalists view

Gluon radiation

General form:

Multiple final-state gluon radiation off of the produced hard parton induced by the traversed dense colored medium

 $\Delta E(E_{iet})$

		— jet	-	L
•	Mean parton energy log	SS		A lot of th

Partonic spectrum

F.

 \otimes

- Mean parton energy loss
 ∞ medium properties:
 - $-\Delta E \sim \rho_{gluon}$ (gluon density)
 - $-\Delta E \sim \Delta L^2$ (medium length)
 - $\Rightarrow \sim \Delta L$ with expansion
- Characterization of medium via transport coefficient *q̂* is mean p_{T²} transferred from the medium to a hard gluon per unit path length λ

A lot of theories/models on the market:

 \otimes

 $D(E_{iet}, \Delta E)$

no theoretical quantitive agreement yet.

Naive summary:

To varying extent all theories (except AdS/CFT) predict a **softening** of the fragmentation and an overall **broadening** of the jet shape!

Finding this

Finding this

in this, is not that easy ... large heavy-ion background fluctuations obscure jet energy scale

So lets look first at something easier, at least from the experimental side: Take a high- p_T particle as a jet proxy ...

fluctuations obscure jet energy scale

Compare to p-p reference at same collision energy **Nuclear Modification Factor:**

$$R_{AA}(p_T) = \frac{Yield(A + A)}{Yield(p + p) \times \langle N_{coll} \rangle}$$
Average number of p-p collision in A-A collision

Compare to p-p reference at same collision energy **Nuclear Modification Factor:**

Compare to p-p reference at same collision energy **Nuclear Modification Factor:**

R<1 at high p_T if QGP affecting parton's propagation

Nuclear Modification Factor vs. Centrality

Suppression/jet quenching effects increase with centrality

Expected in a radiative energy loss picture due to increase of average pathlength of partons in the QGP

Stronger suppression at the LHC than RHIC

"Flatter" partonic spectrum at the LHC

→ larger partonic energy loss at LHC compared to RHIC

 $R_{AA}(p_T) = \frac{d^2 N^{AA} / dy dp_T}{\langle N_{coll} \rangle d^2 N^{pp} / dy dp_T}$

Rise of R_{AA} with increasing p_T characteristic of radiative energy loss models

 $R_{AA}(p_T) = \frac{d^2 N^{AA} / dy dp_T}{\langle N_{coll} \rangle d^2 N^{pp} / dy dp_T}$

Rise of R_{AA} with increasing p_T characteristic of radiative energy loss models

Possible flattening at high p_T

 $R_{AA}(p_T) = \frac{d^2 N^{AA} / dy dp_T}{\langle N_{coll} \rangle d^2 N^{pp} / dy dp_T}$

Rise of R_{AA} with increasing p_T characteristic of radiative energy loss models

Possible flattening at high p_T

R_{AA} measurements put strong constraints on the theoretical description on partonic energy loss in the QGP!

PID Nuclear Modification Factor

$$R_{AA}(p_T) = \frac{d^2 N^{AA} / dy dp_T}{\langle N_{coll} \rangle d^2 N^{pp} / dy dp_T}$$

Similar suppression at high-p_T for all particle species (even D's)

PID R_{AA} measurements will put further strong quantitative constraints on theoretical models!

Quarkonia in ALICE - The Thermometer -

Quarkonia in the QGP - Thermometer

Charmonium suppression

Color screening prevents *c* anti-*c* (and *b* anti-*b*) from binding in de-confined (QGP) matter

Dissociation temperature depends on the binding energy → "QGP thermometer"

Quarkonia in the QGP - Thermometer

Charmonium suppression

Color screening prevents *c* anti-*c* (and *b* anti-*b*) from binding in de-confined (QGP) matter

Dissociation temperature depends on the binding energy → "QGP thermometer"

J/ψ Recombination

Quarkonia - J/ ψ suppression in HI Collisions

Suppression ~ independent on centrality

Qualitatively consistent with recombination picture

But: Shadowing estimate from p+Pb data needed in order to draw a definite conclusion

2011 Pb-Pb increased statistics significantly → important for hard and rare probes

For example: Full jet-reconstruction in heavy-ion collisions Precision jet measurements = precision background correction

- Improved understanding on how to characterize the underlying heavy-ion background fluctuations
- Fully operational EMCal and trigger capability
- Unique tracking capabilities down to very low p_T will minimize jet reconstruction biases, necessary for an unambiguous interpretation and comparison with theory

2011 Pb-Pb increased statistics significantly → important for hard and rare probes

For example: Full jet-reconstruction in heavy-ion collisions Precision jet measurements = precision background correction

- Improved understanding on how to characterize the underlying heavy-ion background fluctuations
- Fully operational EMCal and trigger capability
- Unique tracking capabilities down to very low p_T will minimize jet reconstruction biases, necessary for an unambiguous interpretation and comparison with theory

Just a start, many more: J/ ψ and heavy flavor elliptic flow, direct photon ... Also crucial p+Pb reference run expected in 2012 ...

• ALICE at the LHC is an ideal place to study the QGP

 ALICE measurements of bulk properties and (higher) flow harmonics played a crucial role to confirm the stunning success of hydrodynamics in heavy-ion collisions from RHIC to LHC
 → precision measurements of QGP shear viscosity η/s

 The abundance of hard probes at the LHC combined with the unique ALICE detector capabilities (precision tracking and PID) will put strong quantitative constraints on theoretical models, for example concerning partonic energy loss and quarkonia

• ALICE at the LHC is an ideal place to study the QGP

 ALICE measurements of bulk properties and (higher) flow harmonics played a crucial role to confirm the stunning success of hydrodynamics in heavy-ion collisions from RHIC to LHC
 → precision measurements of QGP shear viscosity η/s

 The abundance of hard probes at the LHC combined with the unique ALICE detector capabilities (precision tracking and PID) will put strong quantitative constraints on theoretical models, for example concerning partonic energy loss and quarkonia

Beginning of a new era in heavy-ion physics with ALICE at the LHC qualitative \rightarrow quantitative (n/s, \hat{q} , ...)

Backup

Lattice QCD

Geometry of a Heavy-Ion Collision

Glauber theory (by now well under control)

Gluon radiation:

Multiple final-state gluon radiation off of the produced hard parton induced by the traversed dense colored medium ~ "Gluon Bremsstrahlung"

Manifestation in the modification of the Jet Structure/Fragmentation Function =fractional jet momentum carried by by the individual jet particles/constituents

Gluon radiation:

Multiple final-state gluon radiation off of the produced hard parton induced by the traversed dense colored medium ~ "Gluon Bremsstrahlung"

Manifestation in the modification of the Jet Structure/Fragmentation Function = fractional jet momentum carried by by the individual jet particles/constituents

Gluon radiation:

Multiple final-state gluon radiation off of the produced hard parton induced by the traversed dense colored medium ~ "Gluon Bremsstrahlung"

Hard E $\omega = (1-x)E$ Production $\gamma q_T \sim \mu$ λ Medium

Manifestation in the modification of the Jet Structure/Fragmentation Function = fractional jet momentum carried by by the individual jet particles/constituents

Gluon radiation:

Multiple final-state gluon radiation off of the produced hard parton induced by the traversed dense colored medium ~ "Gluon Bremsstrahlung"

Manifestation in the modification of the Jet Structure/Fragmentation Function = fractional jet momentum carried by by the individual jet particles/constituents

