Physics with electroweak gauge bosons at LHCb

Philip Ilten on behalf of the LHCb Collaboration

University College Dublin

May 7, 2012 Phenomonology 2012, Pittsburgh

Outline

- Introduction
 - LHCb
 - Motivation
- Analyses
 - $\gamma^*/Z \to \ell \ell$
 - $Z \rightarrow \mu \mu$
 - $Z \rightarrow ee$
 - $Z \to \tau \tau$

•
$$\gamma^*/Z \to \mu\mu$$

•
$$W \to \nu_{\mu} \mu$$

• Conclusion

Introduction

LHCb

• 2010 dataset

•
$$37.7 \text{ pb}^{-1}$$

 $\sqrt{s} = 7 \text{ TeV}$

• 2011 dataset

• 1.0 fb⁻¹
$$\sqrt{s} = 7$$
 TeV

• 2012 dataset
•
$$1.5 \text{ fb}^{-1}$$

 $\sqrt{s} = 8 \text{ TeV}$

- designed for B decays
- forward arm spectrometer
 - $1.9 \le \eta \le 2.5$ (common to GPD's)
 - 2.5 < $\eta \leq 4.9$ (unique to LHCb)

- tracker, ECAL, HCAL, muon chambers (common to GPD's)
- Cherenkov detectors (unique to LHCb)
- $p_T > 10 \text{ GeV muon trigger}$

Introduction

PDF Uncertainty

Ilten (UCD)

Electroweak Physics at LHCb

May 7, 2012 4 / 20

$Z \rightarrow \mu \mu$ Analysis (LHCb-PAPER-2012-008)

- $p_T^{\mu} > 10 \,\, {\rm GeV}$
- reconstruct two muons
 - track quality
 - $p_T^{\mu} > 20 \,\, {\rm GeV}$
 - $2.0 < \eta_{\mu} < 4.5$
 - $60 \le M_{\mu\mu} \le 120$

- $\mathscr{L} = 37 \text{ pb}^{-1} (2010)$
- backgrounds
 - heavy flavor background (data)
 - 3.5 ± 0.8 events
 - misidentified pions or kaons (data)
 - $Z \to \tau \tau$ background (MC)
 - 0.6 ± 0.1 events
 - *WW* (MC)
 - 0.2 ± 0.1 events
 - $t\bar{t}$ (MC)
 - 0.5 ± 0.2 events

•
$$N_{\rm bkg} = 4.9 \pm 2.0$$

• $N_{\rm tot} = 1966$

 $Z \to \mu \mu$ Cross Section Determination

$$\sigma(p_T^{\mu} > 20, 2.0 < \eta^{\mu} < 4.5, 60 < M_{\mu\mu} < 120) = \frac{(N_{\text{tot}} - N_{\text{bkg}})f_{\text{FSR}}}{\mathscr{L}\mathcal{A}\varepsilon}$$

$arepsilon = arepsilon_{ m trg}^{\mu} arepsilon_{ m trk}^{\mu} arepsilon_{ m id}^{\mu}$	Systematic	$\Delta \sigma_{Z \to \mu \mu} \ [\%]$
	Purity	± 0.1
• \mathcal{A} defined as one	ε	± 4.3
• tag-and-probe method	$f_{ m FSR}$	± 0.02
• muon trigger $(\varepsilon_{\text{trg}}^{\mu})$ • muon tracking $(\varepsilon_{\mu}^{\mu})$	Total	± 4.3
• muon id (ε_{id}^{μ})	Luminosity	± 3.5

 $Z \to \mu \mu$ Cross Section Result

$\sigma(p_T^{\mu} > 20, 2.0 < \eta^{\mu} < 4.5, 60 < M_{\mu\mu} < 120) = 76.7 \pm 1.7 \pm 3.3 \pm 2.7$

$Z \rightarrow ee$ Analysis (LHCb-CONF-2012-011)

- trigger on single electron
 - $p_T^e > 15 \text{ GeV}$
- reconstruct two electrons
 - track quality, calorimeter
 - $p_T^e > 20 \text{ GeV}$
 - $2.0 < \eta_e < 4.5$
 - $40 \le M_{ee}$

- $\mathscr{L} = 945 \text{ pb}^{-1} (2011)$
- backgrounds
 - generic QCD background (data)
 - 473 ± 22 events
 - $Z \to \tau \tau$ background (MC)
 - < 20 events
 - $t\bar{t}$ (MC)
 - < 20 events

•
$$N_{\rm bkg} = 473 \pm 22$$

• $N_{\rm tot} = 21535$

$Z \rightarrow ee$ Cross Section Determination

$arepsilon = arepsilon_{ m kin} arepsilon_{ m trg}^e arepsilon_{ m trk}^e arepsilon_{ m id}^e ^2$	Systematic	$\Delta \sigma_{Z \to ee} \ [\%]$
 tag-and-probe electron trigger (\varepsilon_{trg}^e) electron identification (\varepsilon_{id}^e) 	$arepsilon_{ m kin}^{arepsilon_{ m trg}^e} arepsilon_{ m trg}^{arepsilon_{ m trg}^e} arepsilon_{ m ce}^{arepsilon_2} arepsilon_{ m trk}^{arepsilon_{ m trk}} arepsilon_{ m ce}^{arepsilon_2} arepsilon_{ m trk}^{arepsilon_{ m trk}}$	± 1.8 0.4 - 14.0 1.6 - 1.7 0.5 - 2.8
• Monte Carlo	$f_{\rm FSR}$	± 0.1
• kinematic $(\varepsilon_{\rm kin})$	Total	± 3.2
• electron tracking $(\varepsilon_{\mathrm{trk}})$	Luminosity	± 3.5

 $Z \rightarrow ee$ Cross Section Result

$\sigma(p_T^e > 20, 2.0 < \eta^e < 4.5, 60 < M_{ee} < 120) = 75.7 \pm 0.5 \pm 2.4 \pm 2.6$

$Z \rightarrow \tau \tau$ Analysis (LHCb-CONF-2011-041)

- two final states, $\tau_{\mu}\tau_{\mu}$ and $\tau_{\mu}\tau_{e}$
- trigger on single muon
 - $p_T^{\mu} > 10 \text{ GeV}$
- reconstruct two particles
 - muon, electron identification
 - $p_T^{\mu} > 20 \text{ GeV}, p_T^{\mu/e} > 5 \text{ GeV}$
 - $2.0 < \eta_{\mu/e} < 4.5$
 - $M_{\mu\mu/e} \ge 20 \text{ GeV}$
- event selection
 - isolated
 - back-to-back in transverse plane
 - impact parameter $(\tau_{\mu}\tau_{\mu}$ only)
 - p_T asymmetry $(\tau_{\mu}\tau_{\mu} \text{ only})$

$Z \to \tau \tau$ Cross Section Determination

• $\mathscr{L} = 247 \text{ pb}^{-1}$ (2010/2011)

$$\varepsilon = \varepsilon_{\rm sel} \varepsilon^{\mu}_{\rm trg} \varepsilon^{\mu}_{\rm trk} \varepsilon^{\mu/e}_{\rm trk} \varepsilon^{\mu/e}_{\rm id} \varepsilon^{\mu/e}_{\rm id}$$

 backgrounds 	Systematic	$\Delta \sigma_{Z \to \tau_{\mu} \tau_{e}} $ [%]	$\Delta \sigma_{Z \to \tau_{\mu} \tau_{\mu}} $ [%]
• QCD (data)	$\varepsilon_{ m sel}$	± 6.5	± 8.1
• $Z \rightarrow \mu \mu$	$\varepsilon^{\mu}_{ m trg}$	± 1.3	± 1.3
(data)	$\varepsilon^{\mu}_{\rm trk}$	± 2.4	± 2.4
• $N_{\rm bkg}^{\tau_{\mu}\tau_{e}} =$	$\varepsilon^{\mu}_{\rm id}$	± 0.2	± 0.2
12.4 ± 2.7	$arepsilon_{ m trk}^e$	± 3.8	
• $N_{\rm tot}^{\tau_\mu \tau_e} = 81$	$\varepsilon_{\rm id}^e$	± 1.0	
• $N_{\rm bkg}^{\tau_{\mu}\tau_{\mu}} = 7.1 \pm 2.0$	Total	± 10.1	± 11.2
• $N_{\rm tot}^{\tau_\mu \tau_\mu} = 33$	Luminosity	± 6.0	± 6.0

$Z \to \tau \tau$ Cross Section Result

$$\sigma_{\tau_{\mu}\tau_{e}}(p_{T}^{\tau} > 20, 2.0 < \eta^{\tau} < 4.5, 60 < M_{\tau\tau} < 120) = 79 \pm 9 \pm 8 \pm 4$$

$$\sigma_{\tau_{\mu}\tau_{\mu}}(p_{T}^{\tau} > 20, 2.0 < \eta^{\tau} < 4.5, 60 < M_{\tau\tau} < 120) = 89 \pm 15 \pm 10 \pm 5$$

$$\Gamma_{Z \to \tau\tau} / \Gamma_{Z \to \mu\mu} = 1.09 \pm 0.17$$

$\gamma^*/Z \to \mu\mu$ Analysis (LHCb-CONF-2012-013)

- dimuon trigger
 - $p_T^{\mu} > 2.5 \text{ GeV}$
- reconstruct two muons
 - track quality
 - $p_T^{\mu} > 3, \, p^{\mu} > 10 \text{ GeV}$
 - for $M_{\mu\mu} > 40, \, p_T^{\mu} > 15$
 - $2.0 < \eta_{\mu} < 4.5$
 - $5 \le M_{\mu\mu} \le 120$

- $\mathscr{L} = 37 \text{ pb}^{-1} (2010)$
- event selection
 - muon isolation
- backgrounds
 - heavy flavour (data)
 - require large impact parameter
 - hadron mis-id (data)
 - taken from minimum bias sample
 - upsilon (MC)

$\gamma^*/Z \to \mu\mu$ Cross Section Determination

$$\varepsilon = \varepsilon^{\mu}_{\rm trg} \varepsilon^{\mu}_{\rm trk}{}^2 \varepsilon^{\mu}_{\rm id}{}^2$$

- \mathcal{A} defined as one
- tag-and-probe method
 - muon trigger (ε^μ_{trg})
 muon tracking (ε^μ_{trk})

 - muon id (ε_{id}^{μ})

Systematic	$\Delta \sigma_{\gamma^*/Z \to \mu\mu} $ [%]
${arepsilon_{ m trg}}^{\mu}{}^2$	1.7 - 4.3
$arepsilon_{ m trk}^{\mu~2}$	4 - 10
$arepsilon_{\mathrm{id}}^{\mu 2}$	± 1.4
HF template	1 - 24
mis-id template	1 - 4
signal template	1 - 8
Luminosity	± 3.5

$\gamma^*/Z \to \mu\mu$ Cross Section Result

$W \rightarrow \mu \nu_{\mu}$ (LHCb-PAPER-2012-008)

- trigger on single muon
 - $p_T^{\mu} > 10 \text{ GeV}$
- reconstruct one muon
 - track quality
 - $p_T^{\mu} > 20 \text{ GeV}$
 - $2.0 < \eta_{\mu} < 4.5$
- event selection
 - no other muons with $p_T > 5$ GeV
 - impact parameter
 - track isolation
 - calorimeter isolation
- $N_{\rm tot}^{W^+} = 14660$
- $N_{\rm tot}^{W^-} = 11618$

- $\mathscr{L} = 37 \text{ pb}^{-1} (2010)$
- backgrounds
 - π/K decay (data)
 - $Z \rightarrow \mu \mu$ (MC)
 - $W \to \tau \nu_{\tau}, \ Z \to \tau \tau \ (MC)$
 - heavy flavor (data)

$W \to \mu \nu_{\mu}$ Cross Section Determination

$$\varepsilon = \varepsilon_{sel} \underbrace{\varepsilon_{trg}^{\mu} \varepsilon_{trk}^{\mu} \varepsilon_{id}^{\mu}}_{\varepsilon_{trk}^{\mu} \varepsilon_{id}^{\mu}}$$

- reconstruction efficiency ($\varepsilon_{\rm rec}$) same as $Z \to \mu \mu$
- event selection (ε_{sel})
 - from $Z \to \mu \mu$ data
 - single muon masked

Systematic	$\mid \Delta \sigma_{W^+ \rightarrow \mu^+ \nu} $ [%]	$\Delta\sigma_{W^+\to\mu^+\nu} \ [\%]$
Purity	± 1.2	± 0.9
Shape	± 0.9	± 1.0
$\varepsilon_{ m rec}$	± 2.2	± 2.0
$\varepsilon_{ m sel}$	± 1.8	± 1.7
$f_{\rm FSR}$	± 0.01	± 0.02
Total	± 3.2	± 2.9
Luminosity	± 3.5	± 3.5

$W \to \mu \nu_{\mu}$ Cross Section Result

Conclusion

- full set of W/Z measurements performed in forward region
- measurements in good agreement with NNLO theory
- upcoming updates with full 2011 data set for all analyses
- additional hadronic channels added to $z \to \tau \tau$ analysis
- W and Z plus jets analysis in progress
- looking forward to 2012 data!