Boosted Tops from Gluino Decays

Michael Saelim

Cornell University

Pheno 2012

Joshua Berger, Maxim Perelstein, M.S., Andrew Spray arXiv:1111.6594

One-slide overview

- LHC + naturalness \implies SUSY w/ light 3rd gen.
- Gluino pair-production signatures:

4 boosted tops + MET

- Tagging boosted tops gives us low SM background
- Probe gluino masses up to 1 TeV at the 7 TeV LHC
 with $\int \mathcal{L} = 30 \ \text{fb}^{-1}$

SUSY with light 3rd generation

MSSM w/ degenerate
 squarks: squarks and gluinos
 > 1 TeV

 MSSM w/ light 3rd gen.: stops > 2-300 GeV,

gluinos > 600 GeV

(arXiv:1110.6926)

Simplified model

- ▶ Require m(ğ) m(t̃) and m(t̃) m(X̃⁰) > m(t) to get on-shell tops, and fix m(X̃⁰) = 60 GeV
- 4 top + MET signal

(figure credit: CMS PAS SUS-11-020)

Tagging boosted tops

- First done at Johns Hopkins (arXiv: 0806.0848)
- \blacktriangleright Cluster "fat jets" with R \sim 1.0
- Examine substructure and invariant mass of hadronic tops
 - (figure credit: ATLAS-CONF-2011-073)

Johns Hopkins Top Tagger

- 50% tag rate, with only a few % mistag rate
- Used in search for $Z' \rightarrow t \overline{t}$ (CMS-EXO-11-006)

- Gluino pair-production
- We require
 - \geq 4 jets with p_T > 100 GeV,
 - some jets top-tagged,
 - and significant $\mathcal{E}_{\mathcal{T}}$

Background simulation

- Backgrounds:
 - $n \operatorname{tops} + (4 n) \operatorname{jets}$
 - $n \operatorname{tops} + (4 n) \operatorname{jets} + \operatorname{leptonic} W$
 - n tops + (4 n) jets + invisible Z
- ▶ LO cross sections used; known K-factors are < 1
- p_T and \mathcal{E}_T cut efficiencies computed at parton level
- *p_T*-dependent tagging efficiencies and mistag rates
 from the BOOST2010 workshop used (arXiv:1012.5412)

Cuts at 7 TeV and 30 fb^{-1}

- Optimized for $(m(\tilde{g}), m(\tilde{t})) = (800, 400)$ GeV
 - \geq 4 jets with p_T > 100 GeV
 - \geq 2 of those have top tags
 - $\not\!\!{E_T} > 100~{\rm GeV}$
- ▶ 32 signal events, S/B = 2.4, stat. sig. 6.8

Benchmark efficiencies at 7 TeV

Process	$\sigma_{ m tot}(\textit{fb})$	$\operatorname{Eff}(p_T)$ (%)	Eff(tag)	$\sigma_{ m tag}$	$Eff(\not E_T)$	$\sigma_{\rm all\ cuts}$
signal	61.5	37	6	1.31	81	1.06
Z + 4j	$2 imes 10^5$	0.2	0.1	0.44	66	0.29
2t + 2j	$5 imes 10^4$	3	0.3	5.7	2	0.10
W + 4j	$2 imes 10^5$	0.2	0.03	0.12	29	0.04
Z + 2t + 2j	50	4	1	0.02	72	0.02

Reach at 7 TeV and 30 fb^{-1}

- Probe ğ mass up to
 1 TeV
- 5σ up to m(ĝ) ~ 900
 GeV
- S/B > 1 throughout

the probed region

Going to 14 TeV and 10 fb^{-1}

However...

- Detector effects/systematics not included
- Larger background samples needed
- QCD 4 $j \not E_T$ tail needs studying
- But, the reach may be underestimated

Conclusion

- SUSY could be hiding if lightest colored super partner is stop
- Boosted top tagging provides excellent coverage of this scenario, including at 7 and 8 TeV
- Let's get an experimental analysis going!

Extra Slides

Johns Hopkins top tagger settings

- $\delta_p = 0.04$
- ▶ δ_r = 0.19
- $160 < m_t < 265 \text{ GeV}$
- $\cos \theta_h < 0.95$
- $60 < m_W < 120 \,\,{
 m GeV}$

$\mathcal{E}_{\mathcal{T}}$ after top tag cuts at benchmark

LHC,
$$\sqrt{s} = 7$$
 TeV, $L_{int} = 30$ fb⁻¹

Update: CMS PAS SUS-11-020 (March

2012)

- Preliminary update
 - after 4.7 fb⁻¹:
- gluinos > 800 GeV